Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016016630> ?p ?o ?g. }
- W2016016630 endingPage "60" @default.
- W2016016630 startingPage "50" @default.
- W2016016630 abstract "The extent to which SOM content and texture affect C and N dynamics during dry/wet cycles is poorly understood. A laboratory incubation study was conducted to quantify short-term changes in SOM (C & N) fractions and their relationship to C and N mineralisation in response to dry/wet cycles along a SOM gradient in two soil types of differing texture. The experiment consisted of three phases: pre-incubation, treatment and recovery. Three soil water content (SWC) treatments were established: continuously wet (WW; field capacity (FC)), moderately dry (MD; 120% of SWC at wilting point (WP)) and very dry (VD; 80% of SWC at WP). Each of the two ‘dry’ treatments were either maintained continuously dry (MD & VD) or subjected to three sequential 20 d-long dry/wet cycles (MDW & VDW) during the experiments treatment phase. All soils were returned to FC at the start of the recovery phase and analyses were carried out at the end of each phase. Over all, the results of this study showed that SOC content and texture are important factors affecting the size of several commonly measured fractions of soil organic matter, but the stability and resilience of these fractions depended on the duration and amplitude of dry/wet cycles. Whereas most of the measured C and N fractions (cold water extractable C [CWEC] and hot water extractable C [HWEC], microbial biomass C [MBC] and N [MBN], inorganic N) were affected by both the duration (e.g. MDW vs. MD) and amplitude (e.g. MDW vs. VDW) of dry/wet cycles, the response differed between fractions and the effects tended to be much stronger in silt loam than in clay loam soils. The duration and amplitude of dry/wet cycles also suppressed the rate of both C and N mineralisation in both soils compared to continuously wet conditions. There was also strong evidence that the C mineralised from both soils during the recovery phase (i.e. following rewetting of dry soils) compensated for the reduction in C mineralised during the treatment phase. For N mineralisation, the amplitude of dry/wet cycles was at least as important as the duration of the cycles in affecting N mineralisation during the recovery phase. Much higher rates of N mineralisation were observed in soils that had previously been exposed to very dry conditions, particularly in the silt loam soil. There was some evidence that HWEC was the primary source of the C made available during the rewetting of dry soil and that it contributed to the increased availability of CWEC and supported an increase in MBC and C mineralisation in both soils during the recovery phase. In contrast, there was no evidence that differences in availability of C and N fractions affected the rate of N mineralisation following the return of dry soils to continuously wet conditions. Further research is need to resolve the primary factors that regulate N mineralisation response to the recovery from dry soil conditions." @default.
- W2016016630 created "2016-06-24" @default.
- W2016016630 creator A5025752062 @default.
- W2016016630 creator A5050967722 @default.
- W2016016630 creator A5078129432 @default.
- W2016016630 creator A5083343348 @default.
- W2016016630 date "2014-07-01" @default.
- W2016016630 modified "2023-10-18" @default.
- W2016016630 title "Soil organic matter and texture affect responses to dry/wet cycles: Changes in soil organic matter fractions and relationships with C and N mineralisation" @default.
- W2016016630 cites W1595196063 @default.
- W2016016630 cites W1964994969 @default.
- W2016016630 cites W1965069943 @default.
- W2016016630 cites W1967778416 @default.
- W2016016630 cites W1970284721 @default.
- W2016016630 cites W1971868399 @default.
- W2016016630 cites W1973658913 @default.
- W2016016630 cites W1976753904 @default.
- W2016016630 cites W1985721132 @default.
- W2016016630 cites W1985749388 @default.
- W2016016630 cites W1987326068 @default.
- W2016016630 cites W1989457260 @default.
- W2016016630 cites W1989550109 @default.
- W2016016630 cites W1989998931 @default.
- W2016016630 cites W1992884211 @default.
- W2016016630 cites W1996440470 @default.
- W2016016630 cites W2001676530 @default.
- W2016016630 cites W2004256739 @default.
- W2016016630 cites W2014264565 @default.
- W2016016630 cites W2014456287 @default.
- W2016016630 cites W2020985306 @default.
- W2016016630 cites W2023860662 @default.
- W2016016630 cites W2025656342 @default.
- W2016016630 cites W2031394562 @default.
- W2016016630 cites W2031809412 @default.
- W2016016630 cites W2032647837 @default.
- W2016016630 cites W2034152380 @default.
- W2016016630 cites W2035775179 @default.
- W2016016630 cites W2039114009 @default.
- W2016016630 cites W2039739355 @default.
- W2016016630 cites W2041671416 @default.
- W2016016630 cites W2048064426 @default.
- W2016016630 cites W2057183711 @default.
- W2016016630 cites W2060596033 @default.
- W2016016630 cites W2069460899 @default.
- W2016016630 cites W2070436936 @default.
- W2016016630 cites W2070641247 @default.
- W2016016630 cites W2080651961 @default.
- W2016016630 cites W2081264397 @default.
- W2016016630 cites W2092577066 @default.
- W2016016630 cites W2092692308 @default.
- W2016016630 cites W2092848961 @default.
- W2016016630 cites W2095177008 @default.
- W2016016630 cites W2098838415 @default.
- W2016016630 cites W2102327700 @default.
- W2016016630 cites W2103011777 @default.
- W2016016630 cites W2103227345 @default.
- W2016016630 cites W2103757487 @default.
- W2016016630 cites W2108929748 @default.
- W2016016630 cites W2114627689 @default.
- W2016016630 cites W2117350830 @default.
- W2016016630 cites W2119797678 @default.
- W2016016630 cites W2123739740 @default.
- W2016016630 cites W2152104024 @default.
- W2016016630 cites W2163462941 @default.
- W2016016630 cites W4247677532 @default.
- W2016016630 cites W4251264506 @default.
- W2016016630 doi "https://doi.org/10.1016/j.soilbio.2014.02.021" @default.
- W2016016630 hasPublicationYear "2014" @default.
- W2016016630 type Work @default.
- W2016016630 sameAs 2016016630 @default.
- W2016016630 citedByCount "59" @default.
- W2016016630 countsByYear W20160166302015 @default.
- W2016016630 countsByYear W20160166302016 @default.
- W2016016630 countsByYear W20160166302017 @default.
- W2016016630 countsByYear W20160166302018 @default.
- W2016016630 countsByYear W20160166302019 @default.
- W2016016630 countsByYear W20160166302020 @default.
- W2016016630 countsByYear W20160166302021 @default.
- W2016016630 countsByYear W20160166302022 @default.
- W2016016630 countsByYear W20160166302023 @default.
- W2016016630 crossrefType "journal-article" @default.
- W2016016630 hasAuthorship W2016016630A5025752062 @default.
- W2016016630 hasAuthorship W2016016630A5050967722 @default.
- W2016016630 hasAuthorship W2016016630A5078129432 @default.
- W2016016630 hasAuthorship W2016016630A5083343348 @default.
- W2016016630 hasConcept C127313418 @default.
- W2016016630 hasConcept C140793950 @default.
- W2016016630 hasConcept C144144481 @default.
- W2016016630 hasConcept C159390177 @default.
- W2016016630 hasConcept C159750122 @default.
- W2016016630 hasConcept C175963888 @default.
- W2016016630 hasConcept C178790620 @default.
- W2016016630 hasConcept C182124840 @default.
- W2016016630 hasConcept C185592680 @default.
- W2016016630 hasConcept C187320778 @default.
- W2016016630 hasConcept C24939127 @default.
- W2016016630 hasConcept C2780138947 @default.
- W2016016630 hasConcept C27934549 @default.