Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016022549> ?p ?o ?g. }
- W2016022549 endingPage "1628" @default.
- W2016022549 startingPage "1609" @default.
- W2016022549 abstract "The first-principles, density-functional version of the generalized pseudopotential theory (GPT), previously developed for empty- and filled-d-band metals, recently has been extended to pure transition metals with partially filled d bands [Phys. Rev. B 38, 3199 (1988)]. Within this formalism, a rigorous real-space expansion of the bulk total energy has been obtained in terms of widely transferable, structure-independent interatomic potentials, including both central-force pair interactions and angular-force triplet and quadruplet interactions. In the central transition metals, the three- and four-ion potentials, ${mathit{v}}_{3}$ and ${mathit{v}}_{4}$, are essential to a proper description of materials properties, but are necessarily multidimensional functions which cannot be easily tabulated for application purposes.We develop here a simplified version of the theory, the model GPT, in which these potentials can be expressed analytically while retaining the most important physics of the full first-principles treatment. The analytic treatment of ${mathit{v}}_{3}$ and ${mathit{v}}_{4}$ is made possible because of three simplifying features in the central transition metals. First, due to the nonspherical nature of the Fermi surface in such metals, the long-range sp-d hybridization tails of the first-principles potentials destructively interfere in total-energy calculations and thus can be dropped at the outset without major consequences. Second, the direct d-d contributions to the potentials are short ranged and need only be retained to fourth order in interatomic d-state matrix elements to obtain a good representation of the d-band-structure energy. Third, the d bands are canonical in nature, with the interatomic matrix elements well approximated by simple forms, so that all remaining low-order d-state contributions can be evaluated analytically.This leads to a description of ${mathit{v}}_{3}$ and ${mathit{v}}_{4}$ in terms of universal short-range radial and angular functions. The model GPT is made quantitatively accurate for real materials by allowing the coefficient of each d-state contribution to be adjusted to match first-principles calculations and/or experimental data. In this manner, one can achieve a set of potentials which simultaneously yield a good description of cohesion, vacancy formation, structural phase stability, elastic constants, and phonons, as is demonstrated for the representative case of molybdenum. More generally, the analytic potentials are suitable for widescale applications and permit for the first time the use of the transition-metal GPT in molecular-dynamics and Monte Carlo simulations." @default.
- W2016022549 created "2016-06-24" @default.
- W2016022549 creator A5039759295 @default.
- W2016022549 date "1990-07-15" @default.
- W2016022549 modified "2023-09-26" @default.
- W2016022549 title "Analytic representation of multi-ion interatomic potentials in transition metals" @default.
- W2016022549 cites W1970160072 @default.
- W2016022549 cites W1981049088 @default.
- W2016022549 cites W1994440013 @default.
- W2016022549 cites W1995780391 @default.
- W2016022549 cites W2006811919 @default.
- W2016022549 cites W2012233119 @default.
- W2016022549 cites W2015509631 @default.
- W2016022549 cites W2019100394 @default.
- W2016022549 cites W2030976617 @default.
- W2016022549 cites W2045326938 @default.
- W2016022549 cites W2050672450 @default.
- W2016022549 cites W2054333124 @default.
- W2016022549 cites W2059563797 @default.
- W2016022549 cites W2062402464 @default.
- W2016022549 cites W2067535746 @default.
- W2016022549 cites W2069026416 @default.
- W2016022549 cites W2070086239 @default.
- W2016022549 cites W2075966481 @default.
- W2016022549 cites W2083111625 @default.
- W2016022549 cites W2083623190 @default.
- W2016022549 cites W2086645625 @default.
- W2016022549 cites W2088582583 @default.
- W2016022549 cites W2090613699 @default.
- W2016022549 cites W2121431463 @default.
- W2016022549 cites W2138728043 @default.
- W2016022549 cites W2154455129 @default.
- W2016022549 cites W2156714646 @default.
- W2016022549 cites W2230728100 @default.
- W2016022549 cites W2495028175 @default.
- W2016022549 cites W4248048101 @default.
- W2016022549 cites W4252822859 @default.
- W2016022549 doi "https://doi.org/10.1103/physrevb.42.1609" @default.
- W2016022549 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9995590" @default.
- W2016022549 hasPublicationYear "1990" @default.
- W2016022549 type Work @default.
- W2016022549 sameAs 2016022549 @default.
- W2016022549 citedByCount "179" @default.
- W2016022549 countsByYear W20160225492012 @default.
- W2016022549 countsByYear W20160225492013 @default.
- W2016022549 countsByYear W20160225492014 @default.
- W2016022549 countsByYear W20160225492016 @default.
- W2016022549 countsByYear W20160225492017 @default.
- W2016022549 countsByYear W20160225492018 @default.
- W2016022549 countsByYear W20160225492019 @default.
- W2016022549 countsByYear W20160225492020 @default.
- W2016022549 countsByYear W20160225492021 @default.
- W2016022549 countsByYear W20160225492022 @default.
- W2016022549 countsByYear W20160225492023 @default.
- W2016022549 crossrefType "journal-article" @default.
- W2016022549 hasAuthorship W2016022549A5039759295 @default.
- W2016022549 hasConcept C106773901 @default.
- W2016022549 hasConcept C121332964 @default.
- W2016022549 hasConcept C121864883 @default.
- W2016022549 hasConcept C145148216 @default.
- W2016022549 hasConcept C159467904 @default.
- W2016022549 hasConcept C161790260 @default.
- W2016022549 hasConcept C17744445 @default.
- W2016022549 hasConcept C184779094 @default.
- W2016022549 hasConcept C185592680 @default.
- W2016022549 hasConcept C192562407 @default.
- W2016022549 hasConcept C199539241 @default.
- W2016022549 hasConcept C26873012 @default.
- W2016022549 hasConcept C2776359362 @default.
- W2016022549 hasConcept C2776372370 @default.
- W2016022549 hasConcept C55493867 @default.
- W2016022549 hasConcept C59593255 @default.
- W2016022549 hasConcept C62520636 @default.
- W2016022549 hasConcept C94625758 @default.
- W2016022549 hasConceptScore W2016022549C106773901 @default.
- W2016022549 hasConceptScore W2016022549C121332964 @default.
- W2016022549 hasConceptScore W2016022549C121864883 @default.
- W2016022549 hasConceptScore W2016022549C145148216 @default.
- W2016022549 hasConceptScore W2016022549C159467904 @default.
- W2016022549 hasConceptScore W2016022549C161790260 @default.
- W2016022549 hasConceptScore W2016022549C17744445 @default.
- W2016022549 hasConceptScore W2016022549C184779094 @default.
- W2016022549 hasConceptScore W2016022549C185592680 @default.
- W2016022549 hasConceptScore W2016022549C192562407 @default.
- W2016022549 hasConceptScore W2016022549C199539241 @default.
- W2016022549 hasConceptScore W2016022549C26873012 @default.
- W2016022549 hasConceptScore W2016022549C2776359362 @default.
- W2016022549 hasConceptScore W2016022549C2776372370 @default.
- W2016022549 hasConceptScore W2016022549C55493867 @default.
- W2016022549 hasConceptScore W2016022549C59593255 @default.
- W2016022549 hasConceptScore W2016022549C62520636 @default.
- W2016022549 hasConceptScore W2016022549C94625758 @default.
- W2016022549 hasIssue "3" @default.
- W2016022549 hasLocation W20160225491 @default.
- W2016022549 hasLocation W20160225492 @default.
- W2016022549 hasOpenAccess W2016022549 @default.
- W2016022549 hasPrimaryLocation W20160225491 @default.
- W2016022549 hasRelatedWork W1966924299 @default.