Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016023958> ?p ?o ?g. }
- W2016023958 endingPage "23" @default.
- W2016023958 startingPage "14" @default.
- W2016023958 abstract "Abstract Classification and regression trees are machine‐learning methods for constructing prediction models from data. The models are obtained by recursively partitioning the data space and fitting a simple prediction model within each partition. As a result, the partitioning can be represented graphically as a decision tree. Classification trees are designed for dependent variables that take a finite number of unordered values, with prediction error measured in terms of misclassification cost. Regression trees are for dependent variables that take continuous or ordered discrete values, with prediction error typically measured by the squared difference between the observed and predicted values. This article gives an introduction to the subject by reviewing some widely available algorithms and comparing their capabilities, strengths, and weakness in two examples. © 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 14‐23 DOI: 10.1002/widm.8 This article is categorized under: Technologies > Classification Technologies > Machine Learning Technologies > Prediction Algorithmic Development > Statistics" @default.
- W2016023958 created "2016-06-24" @default.
- W2016023958 creator A5080152913 @default.
- W2016023958 date "2011-01-01" @default.
- W2016023958 modified "2023-10-09" @default.
- W2016023958 title "Classification and regression trees" @default.
- W2016023958 cites W131306027 @default.
- W2016023958 cites W1614890185 @default.
- W2016023958 cites W1782368751 @default.
- W2016023958 cites W1967610656 @default.
- W2016023958 cites W1974806455 @default.
- W2016023958 cites W1980485115 @default.
- W2016023958 cites W1990351156 @default.
- W2016023958 cites W1997878053 @default.
- W2016023958 cites W2001619934 @default.
- W2016023958 cites W2022501109 @default.
- W2016023958 cites W2026824186 @default.
- W2016023958 cites W2028976833 @default.
- W2016023958 cites W2029606207 @default.
- W2016023958 cites W2043402840 @default.
- W2016023958 cites W2072154218 @default.
- W2016023958 cites W2093729382 @default.
- W2016023958 cites W2112195476 @default.
- W2016023958 cites W2122111042 @default.
- W2016023958 cites W2123998733 @default.
- W2016023958 cites W2143310690 @default.
- W2016023958 cites W2151832869 @default.
- W2016023958 cites W2153476503 @default.
- W2016023958 cites W2161349318 @default.
- W2016023958 cites W2163054609 @default.
- W2016023958 cites W2325180252 @default.
- W2016023958 cites W2768661052 @default.
- W2016023958 cites W2796860229 @default.
- W2016023958 cites W2911964244 @default.
- W2016023958 cites W4212883601 @default.
- W2016023958 doi "https://doi.org/10.1002/widm.8" @default.
- W2016023958 hasPublicationYear "2011" @default.
- W2016023958 type Work @default.
- W2016023958 sameAs 2016023958 @default.
- W2016023958 citedByCount "1158" @default.
- W2016023958 countsByYear W20160239582012 @default.
- W2016023958 countsByYear W20160239582013 @default.
- W2016023958 countsByYear W20160239582014 @default.
- W2016023958 countsByYear W20160239582015 @default.
- W2016023958 countsByYear W20160239582016 @default.
- W2016023958 countsByYear W20160239582017 @default.
- W2016023958 countsByYear W20160239582018 @default.
- W2016023958 countsByYear W20160239582019 @default.
- W2016023958 countsByYear W20160239582020 @default.
- W2016023958 countsByYear W20160239582021 @default.
- W2016023958 countsByYear W20160239582022 @default.
- W2016023958 countsByYear W20160239582023 @default.
- W2016023958 crossrefType "journal-article" @default.
- W2016023958 hasAuthorship W2016023958A5080152913 @default.
- W2016023958 hasConcept C105795698 @default.
- W2016023958 hasConcept C113174947 @default.
- W2016023958 hasConcept C114614502 @default.
- W2016023958 hasConcept C119857082 @default.
- W2016023958 hasConcept C124101348 @default.
- W2016023958 hasConcept C134306372 @default.
- W2016023958 hasConcept C152877465 @default.
- W2016023958 hasConcept C154945302 @default.
- W2016023958 hasConcept C33923547 @default.
- W2016023958 hasConcept C41008148 @default.
- W2016023958 hasConcept C42812 @default.
- W2016023958 hasConcept C5481197 @default.
- W2016023958 hasConcept C83546350 @default.
- W2016023958 hasConcept C84525736 @default.
- W2016023958 hasConceptScore W2016023958C105795698 @default.
- W2016023958 hasConceptScore W2016023958C113174947 @default.
- W2016023958 hasConceptScore W2016023958C114614502 @default.
- W2016023958 hasConceptScore W2016023958C119857082 @default.
- W2016023958 hasConceptScore W2016023958C124101348 @default.
- W2016023958 hasConceptScore W2016023958C134306372 @default.
- W2016023958 hasConceptScore W2016023958C152877465 @default.
- W2016023958 hasConceptScore W2016023958C154945302 @default.
- W2016023958 hasConceptScore W2016023958C33923547 @default.
- W2016023958 hasConceptScore W2016023958C41008148 @default.
- W2016023958 hasConceptScore W2016023958C42812 @default.
- W2016023958 hasConceptScore W2016023958C5481197 @default.
- W2016023958 hasConceptScore W2016023958C83546350 @default.
- W2016023958 hasConceptScore W2016023958C84525736 @default.
- W2016023958 hasIssue "1" @default.
- W2016023958 hasLocation W20160239581 @default.
- W2016023958 hasOpenAccess W2016023958 @default.
- W2016023958 hasPrimaryLocation W20160239581 @default.
- W2016023958 hasRelatedWork W102063058 @default.
- W2016023958 hasRelatedWork W1982169401 @default.
- W2016023958 hasRelatedWork W2030894524 @default.
- W2016023958 hasRelatedWork W2348694184 @default.
- W2016023958 hasRelatedWork W2350430350 @default.
- W2016023958 hasRelatedWork W2356463514 @default.
- W2016023958 hasRelatedWork W2591672004 @default.
- W2016023958 hasRelatedWork W2592385415 @default.
- W2016023958 hasRelatedWork W4243803609 @default.
- W2016023958 hasRelatedWork W4319437832 @default.
- W2016023958 hasVolume "1" @default.
- W2016023958 isParatext "false" @default.