Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016037572> ?p ?o ?g. }
- W2016037572 endingPage "1096" @default.
- W2016037572 startingPage "1087" @default.
- W2016037572 abstract "During the fermentation process, Saccharomyces cerevisiae cells are often inhibited by the accumulated ethanol, and the mechanism of the S. cerevisiae response to ethanol is not fully understood. In the current study, a systematic analytical approach was used to investigate the changes in the S. cerevisiae cell metabolome that were elicited by treatment with various concentrations of ethanol. Gas chromatography-mass spectrometry and a multivariate analysis were employed to investigate the ethanol-associated intracellular biochemical changes in S. cerevisiae. The intracellular metabolite profiles that were found upon treatment of the cells with different concentrations of ethanol were unique and could be distinguished with the aid of principal component analysis. Furthermore, partial least-squares-discriminant analysis revealed a group classification and pairwise discrimination between the control without ethanol and ethanol treated groups, and 29 differential metabolites with variable importance in the projection value greater than 1 were identified, which was also confirmed by the subsequent hierarchical cluster analysis. The metabolic relevance of these compounds in the response of S. cerevisiae to ethanol stress was investigated. Under ethanol stress, the glycolysis was inhibited and the use of carbon sources for fermentation was diminished, which might account for the growth inhibition of S. cerevisiae cells. It was suggested that S. cerevisiae cells change the levels of fatty acids, e.g., hexadecanoic, octadecanoic and palmitelaidic acids, to maintain the integrity of their plasma membrane through decreasing membrane fluidity in the medium containing ethanol. Moreover, the increased levels of some amino acids idemtified in the cells of ethanol-treated experimental group might also confer ethanol tolerance to S. cerevisiae. These results reveal that the metabolomics strategy is a powerful tool to gain insight into the molecular mechanism of a microorganism's cellular response to environmental stress factors." @default.
- W2016037572 created "2016-06-24" @default.
- W2016037572 creator A5014066735 @default.
- W2016037572 creator A5014099627 @default.
- W2016037572 creator A5021629396 @default.
- W2016037572 creator A5050524531 @default.
- W2016037572 creator A5056036078 @default.
- W2016037572 creator A5085279437 @default.
- W2016037572 date "2012-07-01" @default.
- W2016037572 modified "2023-10-11" @default.
- W2016037572 title "Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach" @default.
- W2016037572 cites W152791254 @default.
- W2016037572 cites W1564703012 @default.
- W2016037572 cites W1580242513 @default.
- W2016037572 cites W1981167928 @default.
- W2016037572 cites W1991220371 @default.
- W2016037572 cites W1995054170 @default.
- W2016037572 cites W1996352654 @default.
- W2016037572 cites W1996396905 @default.
- W2016037572 cites W2000331830 @default.
- W2016037572 cites W2000911843 @default.
- W2016037572 cites W2001649514 @default.
- W2016037572 cites W2002525133 @default.
- W2016037572 cites W2018259963 @default.
- W2016037572 cites W2027700190 @default.
- W2016037572 cites W2028400128 @default.
- W2016037572 cites W2033830400 @default.
- W2016037572 cites W2034651317 @default.
- W2016037572 cites W2053462559 @default.
- W2016037572 cites W2053588008 @default.
- W2016037572 cites W2061233851 @default.
- W2016037572 cites W2062815225 @default.
- W2016037572 cites W2064858085 @default.
- W2016037572 cites W2069642546 @default.
- W2016037572 cites W2072336914 @default.
- W2016037572 cites W2074660845 @default.
- W2016037572 cites W2078888194 @default.
- W2016037572 cites W2080106668 @default.
- W2016037572 cites W2086887877 @default.
- W2016037572 cites W2086950734 @default.
- W2016037572 cites W2087671468 @default.
- W2016037572 cites W2087948270 @default.
- W2016037572 cites W2088246177 @default.
- W2016037572 cites W2090550483 @default.
- W2016037572 cites W2090716252 @default.
- W2016037572 cites W2113176563 @default.
- W2016037572 cites W2122259188 @default.
- W2016037572 cites W2136876669 @default.
- W2016037572 cites W2148033110 @default.
- W2016037572 cites W2152162730 @default.
- W2016037572 cites W2159100436 @default.
- W2016037572 cites W2162719625 @default.
- W2016037572 cites W2169729557 @default.
- W2016037572 cites W2328497195 @default.
- W2016037572 doi "https://doi.org/10.1016/j.biocel.2012.03.017" @default.
- W2016037572 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22504284" @default.
- W2016037572 hasPublicationYear "2012" @default.
- W2016037572 type Work @default.
- W2016037572 sameAs 2016037572 @default.
- W2016037572 citedByCount "86" @default.
- W2016037572 countsByYear W20160375722013 @default.
- W2016037572 countsByYear W20160375722014 @default.
- W2016037572 countsByYear W20160375722015 @default.
- W2016037572 countsByYear W20160375722016 @default.
- W2016037572 countsByYear W20160375722017 @default.
- W2016037572 countsByYear W20160375722018 @default.
- W2016037572 countsByYear W20160375722019 @default.
- W2016037572 countsByYear W20160375722020 @default.
- W2016037572 countsByYear W20160375722021 @default.
- W2016037572 countsByYear W20160375722022 @default.
- W2016037572 countsByYear W20160375722023 @default.
- W2016037572 crossrefType "journal-article" @default.
- W2016037572 hasAuthorship W2016037572A5014066735 @default.
- W2016037572 hasAuthorship W2016037572A5014099627 @default.
- W2016037572 hasAuthorship W2016037572A5021629396 @default.
- W2016037572 hasAuthorship W2016037572A5050524531 @default.
- W2016037572 hasAuthorship W2016037572A5056036078 @default.
- W2016037572 hasAuthorship W2016037572A5085279437 @default.
- W2016037572 hasConcept C100544194 @default.
- W2016037572 hasConcept C135870905 @default.
- W2016037572 hasConcept C185592680 @default.
- W2016037572 hasConcept C21565614 @default.
- W2016037572 hasConcept C2777477808 @default.
- W2016037572 hasConcept C2777576037 @default.
- W2016037572 hasConcept C2779222958 @default.
- W2016037572 hasConcept C2780161600 @default.
- W2016037572 hasConcept C43617362 @default.
- W2016037572 hasConcept C55493867 @default.
- W2016037572 hasConcept C98861065 @default.
- W2016037572 hasConceptScore W2016037572C100544194 @default.
- W2016037572 hasConceptScore W2016037572C135870905 @default.
- W2016037572 hasConceptScore W2016037572C185592680 @default.
- W2016037572 hasConceptScore W2016037572C21565614 @default.
- W2016037572 hasConceptScore W2016037572C2777477808 @default.
- W2016037572 hasConceptScore W2016037572C2777576037 @default.
- W2016037572 hasConceptScore W2016037572C2779222958 @default.
- W2016037572 hasConceptScore W2016037572C2780161600 @default.
- W2016037572 hasConceptScore W2016037572C43617362 @default.