Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016042334> ?p ?o ?g. }
- W2016042334 abstract "From the perspective of cognitive informatics, cognition can be viewed as the acquisition of knowledge. In real-world applications, information systems usually contain some degree of noisy data. A new model proposed to deal with the hybrid-feature selection problem combines the neighbourhood approximation and variable precision rough set models. Then rule induction algorithm can learn from selected features in order to reduce the complexity of rule sets. Through proposed integration, the knowledge acquisition process becomes insensitive to the dimensionality of data with a pre-defined tolerance degree of noise and uncertainty for misclassification. When the authors apply the method to a Chinese diabetic diagnosis problem, the hybrid-attribute reduction method selected only five attributes from totally thirty-four measurements. Rule learner produced eight rules with average two attributes in the left part of an IF-THEN rule form, which is a manageable set of rules. The demonstrated experiment shows that the present approach is effective in handling real-world problems." @default.
- W2016042334 created "2016-06-24" @default.
- W2016042334 creator A5011760959 @default.
- W2016042334 creator A5023363049 @default.
- W2016042334 creator A5084355100 @default.
- W2016042334 creator A5087900743 @default.
- W2016042334 date "2010-04-01" @default.
- W2016042334 modified "2023-09-26" @default.
- W2016042334 title "Feature Based Rule Learner in Noisy Environment Using Neighbourhood Rough Set Model" @default.
- W2016042334 cites W1508620301 @default.
- W2016042334 cites W1524239016 @default.
- W2016042334 cites W1570995986 @default.
- W2016042334 cites W1576522963 @default.
- W2016042334 cites W1975980892 @default.
- W2016042334 cites W1978603136 @default.
- W2016042334 cites W1988729036 @default.
- W2016042334 cites W1993246951 @default.
- W2016042334 cites W1996323836 @default.
- W2016042334 cites W1997362234 @default.
- W2016042334 cites W2004410614 @default.
- W2016042334 cites W2011354787 @default.
- W2016042334 cites W2020187505 @default.
- W2016042334 cites W2026301027 @default.
- W2016042334 cites W2028470267 @default.
- W2016042334 cites W2028973107 @default.
- W2016042334 cites W2032300448 @default.
- W2016042334 cites W2037030751 @default.
- W2016042334 cites W2037984448 @default.
- W2016042334 cites W2046241767 @default.
- W2016042334 cites W2049592515 @default.
- W2016042334 cites W2077183117 @default.
- W2016042334 cites W2082173396 @default.
- W2016042334 cites W2097923398 @default.
- W2016042334 cites W2098034130 @default.
- W2016042334 cites W2103812576 @default.
- W2016042334 cites W2108958563 @default.
- W2016042334 cites W2119479037 @default.
- W2016042334 cites W2123509054 @default.
- W2016042334 cites W2125775672 @default.
- W2016042334 cites W2128847842 @default.
- W2016042334 cites W2129251557 @default.
- W2016042334 cites W2132513611 @default.
- W2016042334 cites W2140113707 @default.
- W2016042334 cites W2143317258 @default.
- W2016042334 cites W2143451122 @default.
- W2016042334 cites W2145065758 @default.
- W2016042334 cites W2158633287 @default.
- W2016042334 cites W2163952039 @default.
- W2016042334 cites W2170595610 @default.
- W2016042334 cites W4236137412 @default.
- W2016042334 cites W4236642187 @default.
- W2016042334 cites W4242861367 @default.
- W2016042334 cites W4255833381 @default.
- W2016042334 doi "https://doi.org/10.4018/jssci.2010040104" @default.
- W2016042334 hasPublicationYear "2010" @default.
- W2016042334 type Work @default.
- W2016042334 sameAs 2016042334 @default.
- W2016042334 citedByCount "2" @default.
- W2016042334 countsByYear W20160423342013 @default.
- W2016042334 crossrefType "journal-article" @default.
- W2016042334 hasAuthorship W2016042334A5011760959 @default.
- W2016042334 hasAuthorship W2016042334A5023363049 @default.
- W2016042334 hasAuthorship W2016042334A5084355100 @default.
- W2016042334 hasAuthorship W2016042334A5087900743 @default.
- W2016042334 hasConcept C111012933 @default.
- W2016042334 hasConcept C119857082 @default.
- W2016042334 hasConcept C124101348 @default.
- W2016042334 hasConcept C134306372 @default.
- W2016042334 hasConcept C148483581 @default.
- W2016042334 hasConcept C149271511 @default.
- W2016042334 hasConcept C154945302 @default.
- W2016042334 hasConcept C161677786 @default.
- W2016042334 hasConcept C2776780472 @default.
- W2016042334 hasConcept C2777220311 @default.
- W2016042334 hasConcept C2781170535 @default.
- W2016042334 hasConcept C33923547 @default.
- W2016042334 hasConcept C41008148 @default.
- W2016042334 hasConceptScore W2016042334C111012933 @default.
- W2016042334 hasConceptScore W2016042334C119857082 @default.
- W2016042334 hasConceptScore W2016042334C124101348 @default.
- W2016042334 hasConceptScore W2016042334C134306372 @default.
- W2016042334 hasConceptScore W2016042334C148483581 @default.
- W2016042334 hasConceptScore W2016042334C149271511 @default.
- W2016042334 hasConceptScore W2016042334C154945302 @default.
- W2016042334 hasConceptScore W2016042334C161677786 @default.
- W2016042334 hasConceptScore W2016042334C2776780472 @default.
- W2016042334 hasConceptScore W2016042334C2777220311 @default.
- W2016042334 hasConceptScore W2016042334C2781170535 @default.
- W2016042334 hasConceptScore W2016042334C33923547 @default.
- W2016042334 hasConceptScore W2016042334C41008148 @default.
- W2016042334 hasLocation W20160423341 @default.
- W2016042334 hasOpenAccess W2016042334 @default.
- W2016042334 hasPrimaryLocation W20160423341 @default.
- W2016042334 hasRelatedWork W1487354264 @default.
- W2016042334 hasRelatedWork W1532283144 @default.
- W2016042334 hasRelatedWork W1973866957 @default.
- W2016042334 hasRelatedWork W1979652651 @default.
- W2016042334 hasRelatedWork W1982250082 @default.
- W2016042334 hasRelatedWork W2003632541 @default.
- W2016042334 hasRelatedWork W2032165499 @default.