Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016044251> ?p ?o ?g. }
- W2016044251 endingPage "358" @default.
- W2016044251 startingPage "358" @default.
- W2016044251 abstract "Development and application of transcriptomics-based gene classifiers for ecotoxicological applications lag far behind those of biomedical sciences. Many such classifiers discovered thus far lack vigorous statistical and experimental validations. A combination of genetic algorithm/support vector machines and genetic algorithm/K nearest neighbors was used in this study to search for classifiers of endocrine-disrupting chemicals (EDCs) in zebrafish. Searches were conducted on both tissue-specific and tissue-combined datasets, either across the entire transcriptome or within individual transcription factor (TF) networks previously linked to EDC effects. Candidate classifiers were evaluated by gene set enrichment analysis (GSEA) on both the original training data and a dedicated validation dataset.Multi-tissue dataset yielded no classifiers. Among the 19 chemical-tissue conditions evaluated, the transcriptome-wide searches yielded classifiers for six of them, each having approximately 20 to 30 gene features unique to a condition. Searches within individual TF networks produced classifiers for 15 chemical-tissue conditions, each containing 100 or fewer top-ranked gene features pooled from those of multiple TF networks and also unique to each condition. For the training dataset, 10 out of 11 classifiers successfully identified the gene expression profiles (GEPs) of their targeted chemical-tissue conditions by GSEA. For the validation dataset, classifiers for prochloraz-ovary and flutamide-ovary also correctly identified the GEPs of corresponding conditions while no classifier could predict the GEP from prochloraz-brain.The discrepancies in the performance of these classifiers were attributed in part to varying data complexity among the conditions, as measured to some degree by Fisher's discriminant ratio statistic. This variation in data complexity could likely be compensated by adjusting sample size for individual chemical-tissue conditions, thus suggesting a need for a preliminary survey of transcriptomic responses before launching a full scale classifier discovery effort. Classifier discovery based on individual TF networks could yield more mechanistically-oriented biomarkers. GSEA proved to be a flexible and effective tool for application of gene classifiers but a similar and more refined algorithm, connectivity mapping, should also be explored. The distribution characteristics of classifiers across tissues, chemicals, and TF networks suggested a differential biological impact among the EDCs on zebrafish transcriptome involving some basic cellular functions." @default.
- W2016044251 created "2016-06-24" @default.
- W2016044251 creator A5009833597 @default.
- W2016044251 creator A5038610645 @default.
- W2016044251 creator A5044171138 @default.
- W2016044251 creator A5053148829 @default.
- W2016044251 creator A5077908177 @default.
- W2016044251 creator A5080553694 @default.
- W2016044251 creator A5090610526 @default.
- W2016044251 date "2012-01-01" @default.
- W2016044251 modified "2023-10-10" @default.
- W2016044251 title "Discovery and validation of gene classifiers for endocrine-disrupting chemicals in zebrafish (danio rerio)" @default.
- W2016044251 cites W1987847236 @default.
- W2016044251 cites W2003984511 @default.
- W2016044251 cites W2019145251 @default.
- W2016044251 cites W2020541351 @default.
- W2016044251 cites W2028236537 @default.
- W2016044251 cites W2032504496 @default.
- W2016044251 cites W2033085951 @default.
- W2016044251 cites W2058441145 @default.
- W2016044251 cites W2072041551 @default.
- W2016044251 cites W2075115412 @default.
- W2016044251 cites W2079344048 @default.
- W2016044251 cites W2082496903 @default.
- W2016044251 cites W2092095117 @default.
- W2016044251 cites W2097554668 @default.
- W2016044251 cites W2099841076 @default.
- W2016044251 cites W2105110794 @default.
- W2016044251 cites W2121604817 @default.
- W2016044251 cites W2125877832 @default.
- W2016044251 cites W2127544153 @default.
- W2016044251 cites W2128985829 @default.
- W2016044251 cites W2130410032 @default.
- W2016044251 cites W2137476312 @default.
- W2016044251 cites W2143426320 @default.
- W2016044251 cites W2143449015 @default.
- W2016044251 cites W2154687435 @default.
- W2016044251 doi "https://doi.org/10.1186/1471-2164-13-358" @default.
- W2016044251 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3469349" @default.
- W2016044251 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22849515" @default.
- W2016044251 hasPublicationYear "2012" @default.
- W2016044251 type Work @default.
- W2016044251 sameAs 2016044251 @default.
- W2016044251 citedByCount "11" @default.
- W2016044251 countsByYear W20160442512013 @default.
- W2016044251 countsByYear W20160442512014 @default.
- W2016044251 countsByYear W20160442512015 @default.
- W2016044251 countsByYear W20160442512017 @default.
- W2016044251 countsByYear W20160442512020 @default.
- W2016044251 crossrefType "journal-article" @default.
- W2016044251 hasAuthorship W2016044251A5009833597 @default.
- W2016044251 hasAuthorship W2016044251A5038610645 @default.
- W2016044251 hasAuthorship W2016044251A5044171138 @default.
- W2016044251 hasAuthorship W2016044251A5053148829 @default.
- W2016044251 hasAuthorship W2016044251A5077908177 @default.
- W2016044251 hasAuthorship W2016044251A5080553694 @default.
- W2016044251 hasAuthorship W2016044251A5090610526 @default.
- W2016044251 hasBestOaLocation W20160442511 @default.
- W2016044251 hasConcept C104317684 @default.
- W2016044251 hasConcept C106135958 @default.
- W2016044251 hasConcept C119857082 @default.
- W2016044251 hasConcept C150194340 @default.
- W2016044251 hasConcept C152724338 @default.
- W2016044251 hasConcept C154945302 @default.
- W2016044251 hasConcept C162317418 @default.
- W2016044251 hasConcept C2776878037 @default.
- W2016044251 hasConcept C41008148 @default.
- W2016044251 hasConcept C54355233 @default.
- W2016044251 hasConcept C60644358 @default.
- W2016044251 hasConcept C70721500 @default.
- W2016044251 hasConcept C86803240 @default.
- W2016044251 hasConcept C95371953 @default.
- W2016044251 hasConcept C95623464 @default.
- W2016044251 hasConceptScore W2016044251C104317684 @default.
- W2016044251 hasConceptScore W2016044251C106135958 @default.
- W2016044251 hasConceptScore W2016044251C119857082 @default.
- W2016044251 hasConceptScore W2016044251C150194340 @default.
- W2016044251 hasConceptScore W2016044251C152724338 @default.
- W2016044251 hasConceptScore W2016044251C154945302 @default.
- W2016044251 hasConceptScore W2016044251C162317418 @default.
- W2016044251 hasConceptScore W2016044251C2776878037 @default.
- W2016044251 hasConceptScore W2016044251C41008148 @default.
- W2016044251 hasConceptScore W2016044251C54355233 @default.
- W2016044251 hasConceptScore W2016044251C60644358 @default.
- W2016044251 hasConceptScore W2016044251C70721500 @default.
- W2016044251 hasConceptScore W2016044251C86803240 @default.
- W2016044251 hasConceptScore W2016044251C95371953 @default.
- W2016044251 hasConceptScore W2016044251C95623464 @default.
- W2016044251 hasIssue "1" @default.
- W2016044251 hasLocation W20160442511 @default.
- W2016044251 hasLocation W20160442512 @default.
- W2016044251 hasLocation W20160442513 @default.
- W2016044251 hasLocation W20160442514 @default.
- W2016044251 hasOpenAccess W2016044251 @default.
- W2016044251 hasPrimaryLocation W20160442511 @default.
- W2016044251 hasRelatedWork W1597543017 @default.
- W2016044251 hasRelatedWork W2297026197 @default.
- W2016044251 hasRelatedWork W2938575486 @default.