Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016064634> ?p ?o ?g. }
- W2016064634 endingPage "2763" @default.
- W2016064634 startingPage "2751" @default.
- W2016064634 abstract "The concept of ligand efficiency (LE) indices is widely accepted throughout the drug design community and is frequently used in a retrospective manner in the process of drug development. For example, LE indices are used to investigate LE optimization processes of already-approved drugs and to re-evaluate hit compounds obtained from structure-based virtual screening methods and/or high-throughput experimental assays. However, LE indices could also be applied in a prospective manner to explore drug candidates. Here, we describe the construction of machine learning-based regression models in which LE indices are adopted as an end point and show that LE-based regression models can outperform regression models based on pIC50 values. In addition to pIC50 values traditionally used in machine learning studies based on chemogenomics data, three representative LE indices (ligand lipophilicity efficiency (LLE), binding efficiency index (BEI), and surface efficiency index (SEI)) were adopted, then used to create four types of training data. We constructed regression models by applying a support vector regression (SVR) method to the training data. In cross-validation tests of the SVR models, the LE-based SVR models showed higher correlations between the observed and predicted values than the pIC50-based models. Application tests to new data displayed that, generally, the predictive performance of SVR models follows the order SEI > BEI > LLE > pIC50. Close examination of the distributions of the activity values (pIC50, LLE, BEI, and SEI) in the training and validation data implied that the performance order of the SVR models may be ascribed to the much higher diversity of the LE-based training and validation data. In the application tests, the LE-based SVR models can offer better predictive performance of compound–protein pairs with a wider range of ligand potencies than the pIC50-based models. This finding strongly suggests that LE-based SVR models are better than pIC50-based models at predicting bioactivities of compounds that could exhibit a much higher (or lower) potency." @default.
- W2016064634 created "2016-06-24" @default.
- W2016064634 creator A5014933879 @default.
- W2016064634 date "2014-09-22" @default.
- W2016064634 modified "2023-09-25" @default.
- W2016064634 title "Ligand Efficiency-Based Support Vector Regression Models for Predicting Bioactivities of Ligands to Drug Target Proteins" @default.
- W2016064634 cites W1493790738 @default.
- W2016064634 cites W1969073798 @default.
- W2016064634 cites W1976975058 @default.
- W2016064634 cites W1986684432 @default.
- W2016064634 cites W1998767819 @default.
- W2016064634 cites W1999725648 @default.
- W2016064634 cites W2003970044 @default.
- W2016064634 cites W2005329278 @default.
- W2016064634 cites W2007239864 @default.
- W2016064634 cites W2008312146 @default.
- W2016064634 cites W2013730471 @default.
- W2016064634 cites W2041046391 @default.
- W2016064634 cites W2044002635 @default.
- W2016064634 cites W2047070075 @default.
- W2016064634 cites W2048312836 @default.
- W2016064634 cites W2049454409 @default.
- W2016064634 cites W2057195902 @default.
- W2016064634 cites W2059274030 @default.
- W2016064634 cites W2062458432 @default.
- W2016064634 cites W2096541451 @default.
- W2016064634 cites W2096864392 @default.
- W2016064634 cites W2100672820 @default.
- W2016064634 cites W2104950117 @default.
- W2016064634 cites W2117712317 @default.
- W2016064634 cites W2141528038 @default.
- W2016064634 cites W2148972970 @default.
- W2016064634 cites W2152249789 @default.
- W2016064634 cites W2155894387 @default.
- W2016064634 cites W2166410137 @default.
- W2016064634 doi "https://doi.org/10.1021/ci5003262" @default.
- W2016064634 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25220713" @default.
- W2016064634 hasPublicationYear "2014" @default.
- W2016064634 type Work @default.
- W2016064634 sameAs 2016064634 @default.
- W2016064634 citedByCount "18" @default.
- W2016064634 countsByYear W20160646342015 @default.
- W2016064634 countsByYear W20160646342016 @default.
- W2016064634 countsByYear W20160646342017 @default.
- W2016064634 countsByYear W20160646342018 @default.
- W2016064634 countsByYear W20160646342020 @default.
- W2016064634 countsByYear W20160646342021 @default.
- W2016064634 crossrefType "journal-article" @default.
- W2016064634 hasAuthorship W2016064634A5014933879 @default.
- W2016064634 hasConcept C103697762 @default.
- W2016064634 hasConcept C105795698 @default.
- W2016064634 hasConcept C119857082 @default.
- W2016064634 hasConcept C12267149 @default.
- W2016064634 hasConcept C124101348 @default.
- W2016064634 hasConcept C152877465 @default.
- W2016064634 hasConcept C154945302 @default.
- W2016064634 hasConcept C164126121 @default.
- W2016064634 hasConcept C33923547 @default.
- W2016064634 hasConcept C41008148 @default.
- W2016064634 hasConcept C48921125 @default.
- W2016064634 hasConcept C60644358 @default.
- W2016064634 hasConcept C74187038 @default.
- W2016064634 hasConcept C83546350 @default.
- W2016064634 hasConcept C86803240 @default.
- W2016064634 hasConceptScore W2016064634C103697762 @default.
- W2016064634 hasConceptScore W2016064634C105795698 @default.
- W2016064634 hasConceptScore W2016064634C119857082 @default.
- W2016064634 hasConceptScore W2016064634C12267149 @default.
- W2016064634 hasConceptScore W2016064634C124101348 @default.
- W2016064634 hasConceptScore W2016064634C152877465 @default.
- W2016064634 hasConceptScore W2016064634C154945302 @default.
- W2016064634 hasConceptScore W2016064634C164126121 @default.
- W2016064634 hasConceptScore W2016064634C33923547 @default.
- W2016064634 hasConceptScore W2016064634C41008148 @default.
- W2016064634 hasConceptScore W2016064634C48921125 @default.
- W2016064634 hasConceptScore W2016064634C60644358 @default.
- W2016064634 hasConceptScore W2016064634C74187038 @default.
- W2016064634 hasConceptScore W2016064634C83546350 @default.
- W2016064634 hasConceptScore W2016064634C86803240 @default.
- W2016064634 hasIssue "10" @default.
- W2016064634 hasLocation W20160646341 @default.
- W2016064634 hasLocation W20160646342 @default.
- W2016064634 hasOpenAccess W2016064634 @default.
- W2016064634 hasPrimaryLocation W20160646341 @default.
- W2016064634 hasRelatedWork W1976821496 @default.
- W2016064634 hasRelatedWork W2013813530 @default.
- W2016064634 hasRelatedWork W2186958538 @default.
- W2016064634 hasRelatedWork W2348266722 @default.
- W2016064634 hasRelatedWork W2386463163 @default.
- W2016064634 hasRelatedWork W2902189168 @default.
- W2016064634 hasRelatedWork W3092524006 @default.
- W2016064634 hasRelatedWork W3119383401 @default.
- W2016064634 hasRelatedWork W4223889031 @default.
- W2016064634 hasRelatedWork W4292148089 @default.
- W2016064634 hasVolume "54" @default.
- W2016064634 isParatext "false" @default.
- W2016064634 isRetracted "false" @default.
- W2016064634 magId "2016064634" @default.