Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016066954> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2016066954 endingPage "433" @default.
- W2016066954 startingPage "430" @default.
- W2016066954 abstract "Previous article Next article Diagonality of the Bhattacharyya Matrix As a CharacterizationD. N. ShanbhagD. N. Shanbhaghttps://doi.org/10.1137/1124050PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] B. J. N. Blight and , P. V. Rao, The convergence of Bhattacharyya bounds, Biometrika, 61 (1974), 137–142 MR0381097 (52:1994) 0285.62011 CrossrefGoogle Scholar[2] I. S. Gradshteyn and , I. M. Ryzhik, Tables of integrals, Series and Products, Academic Press, New York and London, 1965 Google Scholar[3] A. I. Ibragimov, On the composition of unimodal distributions, Theory Prob. Appl., 1 (1956), 255–260 10.1137/1101021 LinkGoogle Scholar[4] J. Keilson and , H. Gerber, Some results for discrete unimodality, J. Amer. Statist. Assoc., 66 (1971), 386–389 0236.60017 CrossrefGoogle Scholar[5] Samuel Kotz, Characterizations of statistical distributions: a supplement to recent surveys, Internat. Statist. Rev., 42 (1974), 39–65 MR0353532 (50:6015) 0283.62014 CrossrefGoogle Scholar[6] R. G. Laha and , E. Lukacs, On a problem connected with quadratic regression, Biometrika, 47 (1960), 335–343 MR0121922 (22:12649) 0093.16002 CrossrefGoogle Scholar[7] D. N. Shanbhag, Some characterizations based on the Bhattacharya matrix, J. Appl. Probability, 9 (1972), 580–587 MR0345267 (49:10003) 0252.60008 CrossrefGoogle Scholar[8] J. Whittaker, The Bhattacharyya matrix for the mixture of two distributions, Biometrika, 60 (1973), 201–202 MR0331609 (48:9941) 0254.62020 CrossrefGoogle Scholar[9] V. M. Zolotarev, On the M-divisibility of stable laws, Theory Prob. Appl., 12 (1967), 506–508 10.1137/1112062 0178.21301 LinkGoogle Scholar[10] William Feller, An introduction to probability theory and its applications. Vol. II, Second edition, John Wiley & Sons Inc., New York, 1971xxiv+669 MR0270403 (42:5292) 0219.60003 Google Scholar Previous article Next article FiguresRelatedReferencesCited byDetails A characterization of multivariate normal stable Tweedie models and their associated polynomialsJournal of Computational and Applied Mathematics, Vol. 288 Cross Ref Meixner Hypergeometric Distribution Function29 September 2014 Cross Ref Lower bounds for the variance of unbiased estimators in generalized beta distribution of the second kind (GB2)Studia Scientiarum Mathematicarum Hungarica, Vol. 51, No. 2 Cross Ref Modified D-optimal design for logistic model14 August 2012 | Journal of Statistical Computation and Simulation, Vol. 84, No. 2 Cross Ref Bhattacharyya and Kshirsagar Bounds in Generalized Gamma DistributionCommunications in Statistics - Simulation and Computation, Vol. 42, No. 5 Cross Ref Increasing Hazard Rate of Mixtures for Natural Exponential Families4 January 2016 | Advances in Applied Probability, Vol. 44, No. 2 Cross Ref A view on Bhattacharyya bounds for inverse Gaussian distributions26 February 2009 | Metrika, Vol. 72, No. 2 Cross Ref Regression of polynomial statistics on the sample mean and natural exponential families9 October 2009 | Mathematical Methods of Statistics, Vol. 18, No. 3 Cross Ref Information Measures for Some Well-Known FamiliesCommunications in Statistics - Theory and Methods, Vol. 36, No. 4 Cross Ref Meixner Hypergeometric Distribution Function15 August 2006 Cross Ref Bhattacharyya matrices and cubic exponential familiesStatistical Methodology, Vol. 2, No. 3 Cross Ref Characterizations of some polynomial variance functions byd-pseudo-orthogonalityJournal of Applied Mathematics and Computing, Vol. 19, No. 1-2 Cross Ref A construction of the UMVU estimator for simple quadratic natural exponential familiesJournal of Multivariate Analysis, Vol. 85, No. 2 Cross Ref Une caractérisation des familles exponentielles naturelles quadratiques simples par une propriété de martingale inverseComptes Rendus Mathematique, Vol. 334, No. 5 Cross Ref Multidimensional Bhattacharyya Matrices and Exponential FamiliesJournal of Multivariate Analysis, Vol. 63, No. 1 Cross Ref An extended Laha-Lukacs characterization result based on a regression propertyJournal of Statistical Planning and Inference, Vol. 63, No. 2 Cross Ref The $2d+4$ simple quadratic natural exponential families on ${bf R}sp d$The Annals of Statistics, Vol. 24, No. 4 Cross Ref A moment's approach to some characterization problemsAnnals of the Institute of Statistical Mathematics, Vol. 42, No. 2 Cross Ref Application of the characterization theory to the mixture model5 June 2011 | Journal of Applied Statistics, Vol. 17, No. 2 Cross Ref A characterization of gamma, Meixner hypergeometric and negative binomial distributions based on canonical measures1 December 1982 | Annals of the Institute of Statistical Mathematics, Vol. 34, No. 2 Cross Ref Meixner Classes and Meixner Hyper-Geometric Distributions28 June 2008 | Australian Journal of Statistics, Vol. 24, No. 2 Cross Ref Volume 24, Issue 2| 1980Theory of Probability & Its Applications History Submitted:02 November 1976Published online:28 July 2006 InformationCopyright © 1979 © Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/1124050Article page range:pp. 430-433ISSN (print):0040-585XISSN (online):1095-7219Publisher:Society for Industrial and Applied Mathematics" @default.
- W2016066954 created "2016-06-24" @default.
- W2016066954 creator A5003136641 @default.
- W2016066954 date "1980-06-01" @default.
- W2016066954 modified "2023-10-17" @default.
- W2016066954 title "Diagonality of the Bhattacharyya Matrix As a Characterization" @default.
- W2016066954 cites W1979848870 @default.
- W2016066954 cites W1994677932 @default.
- W2016066954 cites W2003869190 @default.
- W2016066954 cites W2005695907 @default.
- W2016066954 cites W2031055128 @default.
- W2016066954 cites W2085048233 @default.
- W2016066954 cites W2314022390 @default.
- W2016066954 cites W2314470743 @default.
- W2016066954 doi "https://doi.org/10.1137/1124050" @default.
- W2016066954 hasPublicationYear "1980" @default.
- W2016066954 type Work @default.
- W2016066954 sameAs 2016066954 @default.
- W2016066954 citedByCount "28" @default.
- W2016066954 countsByYear W20160669542012 @default.
- W2016066954 countsByYear W20160669542013 @default.
- W2016066954 countsByYear W20160669542014 @default.
- W2016066954 countsByYear W20160669542015 @default.
- W2016066954 countsByYear W20160669542016 @default.
- W2016066954 crossrefType "journal-article" @default.
- W2016066954 hasAuthorship W2016066954A5003136641 @default.
- W2016066954 hasConcept C105795698 @default.
- W2016066954 hasConcept C114614502 @default.
- W2016066954 hasConcept C154945302 @default.
- W2016066954 hasConcept C199343813 @default.
- W2016066954 hasConcept C21596040 @default.
- W2016066954 hasConcept C24145651 @default.
- W2016066954 hasConcept C2777686260 @default.
- W2016066954 hasConcept C28826006 @default.
- W2016066954 hasConcept C33923547 @default.
- W2016066954 hasConcept C41008148 @default.
- W2016066954 hasConcept C71924100 @default.
- W2016066954 hasConceptScore W2016066954C105795698 @default.
- W2016066954 hasConceptScore W2016066954C114614502 @default.
- W2016066954 hasConceptScore W2016066954C154945302 @default.
- W2016066954 hasConceptScore W2016066954C199343813 @default.
- W2016066954 hasConceptScore W2016066954C21596040 @default.
- W2016066954 hasConceptScore W2016066954C24145651 @default.
- W2016066954 hasConceptScore W2016066954C2777686260 @default.
- W2016066954 hasConceptScore W2016066954C28826006 @default.
- W2016066954 hasConceptScore W2016066954C33923547 @default.
- W2016066954 hasConceptScore W2016066954C41008148 @default.
- W2016066954 hasConceptScore W2016066954C71924100 @default.
- W2016066954 hasIssue "2" @default.
- W2016066954 hasLocation W20160669541 @default.
- W2016066954 hasOpenAccess W2016066954 @default.
- W2016066954 hasPrimaryLocation W20160669541 @default.
- W2016066954 hasRelatedWork W1978042415 @default.
- W2016066954 hasRelatedWork W1989613014 @default.
- W2016066954 hasRelatedWork W2017331178 @default.
- W2016066954 hasRelatedWork W2042835466 @default.
- W2016066954 hasRelatedWork W2574977828 @default.
- W2016066954 hasRelatedWork W2963371066 @default.
- W2016066954 hasRelatedWork W2976797620 @default.
- W2016066954 hasRelatedWork W3008121794 @default.
- W2016066954 hasRelatedWork W3086542228 @default.
- W2016066954 hasRelatedWork W3217635579 @default.
- W2016066954 hasVolume "24" @default.
- W2016066954 isParatext "false" @default.
- W2016066954 isRetracted "false" @default.
- W2016066954 magId "2016066954" @default.
- W2016066954 workType "article" @default.