Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016067905> ?p ?o ?g. }
- W2016067905 endingPage "1845" @default.
- W2016067905 startingPage "1833" @default.
- W2016067905 abstract "The convergence of chaotic attractors is demonstrated for increasingly finer spatial discretizations of a dissipative partial differential equation using both the traditional and nonlinear Galerkin methods. This is done for the complex Ginzburg-Landau equation which describes amplitude evolution of instability waves in fluid flow. Density functions of instantaneous Lyapunov exponents are used to establish the convergence. These exponents measure the local variations in the contraction/expansion rates along an orbit. The results indicate that the convergence of the density functions requires no more iterations in time than is needed for convergence of the classical Lyapunov exponent. Thus the density function, which gives a more detailed description of the orbit, can serve as a viable means of comparing different methods of spatial discretization as well as the effect of finer resolution. The density function converged faster, i.e. with fewer modes, in the case of the nonlinear Galerkin method than in the traditional Galerkin method." @default.
- W2016067905 created "2016-06-24" @default.
- W2016067905 creator A5012239950 @default.
- W2016067905 creator A5063958685 @default.
- W2016067905 creator A5074156162 @default.
- W2016067905 date "1995-10-01" @default.
- W2016067905 modified "2023-10-14" @default.
- W2016067905 title "Convergence of a chaotic attractor with increased spatial resolution of the Ginzburg-Landau equation" @default.
- W2016067905 cites W1562360371 @default.
- W2016067905 cites W1594759473 @default.
- W2016067905 cites W1614413256 @default.
- W2016067905 cites W1642891744 @default.
- W2016067905 cites W1863658077 @default.
- W2016067905 cites W186686876 @default.
- W2016067905 cites W1966537315 @default.
- W2016067905 cites W1976213300 @default.
- W2016067905 cites W1977296565 @default.
- W2016067905 cites W1980195419 @default.
- W2016067905 cites W1988055686 @default.
- W2016067905 cites W1988615577 @default.
- W2016067905 cites W1992992086 @default.
- W2016067905 cites W1995551283 @default.
- W2016067905 cites W1996526323 @default.
- W2016067905 cites W1997805843 @default.
- W2016067905 cites W1999281566 @default.
- W2016067905 cites W2005097959 @default.
- W2016067905 cites W2011927688 @default.
- W2016067905 cites W2016308704 @default.
- W2016067905 cites W2020359153 @default.
- W2016067905 cites W2023743841 @default.
- W2016067905 cites W2024062144 @default.
- W2016067905 cites W2026861276 @default.
- W2016067905 cites W2034963843 @default.
- W2016067905 cites W2035506178 @default.
- W2016067905 cites W2037688108 @default.
- W2016067905 cites W2037816256 @default.
- W2016067905 cites W2045906052 @default.
- W2016067905 cites W2046433710 @default.
- W2016067905 cites W2051667601 @default.
- W2016067905 cites W2054142844 @default.
- W2016067905 cites W2056651346 @default.
- W2016067905 cites W2057894479 @default.
- W2016067905 cites W2064416735 @default.
- W2016067905 cites W2076699659 @default.
- W2016067905 cites W2077572921 @default.
- W2016067905 cites W2078362444 @default.
- W2016067905 cites W2078707336 @default.
- W2016067905 cites W2082410277 @default.
- W2016067905 cites W2083490131 @default.
- W2016067905 cites W2087312526 @default.
- W2016067905 cites W2095377493 @default.
- W2016067905 cites W2138311728 @default.
- W2016067905 cites W2278235541 @default.
- W2016067905 cites W2295885183 @default.
- W2016067905 cites W2346714215 @default.
- W2016067905 cites W2535973907 @default.
- W2016067905 cites W2585985436 @default.
- W2016067905 cites W3118711955 @default.
- W2016067905 cites W186281900 @default.
- W2016067905 cites W2483564657 @default.
- W2016067905 cites W2504857796 @default.
- W2016067905 doi "https://doi.org/10.1016/0960-0779(94)00197-x" @default.
- W2016067905 hasPublicationYear "1995" @default.
- W2016067905 type Work @default.
- W2016067905 sameAs 2016067905 @default.
- W2016067905 citedByCount "5" @default.
- W2016067905 countsByYear W20160679052018 @default.
- W2016067905 crossrefType "journal-article" @default.
- W2016067905 hasAuthorship W2016067905A5012239950 @default.
- W2016067905 hasAuthorship W2016067905A5063958685 @default.
- W2016067905 hasAuthorship W2016067905A5074156162 @default.
- W2016067905 hasConcept C121332964 @default.
- W2016067905 hasConcept C134306372 @default.
- W2016067905 hasConcept C140479938 @default.
- W2016067905 hasConcept C154945302 @default.
- W2016067905 hasConcept C158622935 @default.
- W2016067905 hasConcept C162324750 @default.
- W2016067905 hasConcept C164380108 @default.
- W2016067905 hasConcept C186899397 @default.
- W2016067905 hasConcept C191544260 @default.
- W2016067905 hasConcept C2777052490 @default.
- W2016067905 hasConcept C2777303404 @default.
- W2016067905 hasConcept C28826006 @default.
- W2016067905 hasConcept C33923547 @default.
- W2016067905 hasConcept C41008148 @default.
- W2016067905 hasConcept C50522688 @default.
- W2016067905 hasConcept C62520636 @default.
- W2016067905 hasConcept C73000952 @default.
- W2016067905 hasConcept C93779851 @default.
- W2016067905 hasConcept C99692599 @default.
- W2016067905 hasConceptScore W2016067905C121332964 @default.
- W2016067905 hasConceptScore W2016067905C134306372 @default.
- W2016067905 hasConceptScore W2016067905C140479938 @default.
- W2016067905 hasConceptScore W2016067905C154945302 @default.
- W2016067905 hasConceptScore W2016067905C158622935 @default.
- W2016067905 hasConceptScore W2016067905C162324750 @default.
- W2016067905 hasConceptScore W2016067905C164380108 @default.
- W2016067905 hasConceptScore W2016067905C186899397 @default.