Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016070752> ?p ?o ?g. }
- W2016070752 abstract "Machine Learning techniques such as Genetic Algorithms and Decision Trees have been applied to the field of intrusion detection for more than a decade. Machine Learning techniques can learn normal and anomalous patterns from training data and generate classifiers that then are used to detect attacks on computer systems. In general, the input data to classifiers is in a high dimension feature space, but not all of features are relevant to the classes to be classified. In this paper, we use a genetic algorithm to select a subset of input features for decision tree classifiers, with a goal of increasing the detection rate and decreasing the false alarm rate in network intrusion detection. We used the KDDCUP 99 data set to train and test the decision tree classifiers. The experiments show that the resulting decision trees can have better performance than those built with all available features." @default.
- W2016070752 created "2016-06-24" @default.
- W2016070752 creator A5037787380 @default.
- W2016070752 creator A5071937302 @default.
- W2016070752 creator A5077604881 @default.
- W2016070752 creator A5085472103 @default.
- W2016070752 date "2005-01-01" @default.
- W2016070752 modified "2023-10-09" @default.
- W2016070752 title "Decision tree classifier for network intrusion detection with GA-based feature selection" @default.
- W2016070752 cites W147687952 @default.
- W2016070752 cites W1484990855 @default.
- W2016070752 cites W1496351645 @default.
- W2016070752 cites W1497256448 @default.
- W2016070752 cites W1511198960 @default.
- W2016070752 cites W1523646822 @default.
- W2016070752 cites W1539741229 @default.
- W2016070752 cites W1539745582 @default.
- W2016070752 cites W1542321601 @default.
- W2016070752 cites W1554891714 @default.
- W2016070752 cites W1558491769 @default.
- W2016070752 cites W1574683181 @default.
- W2016070752 cites W1787544972 @default.
- W2016070752 cites W1989344766 @default.
- W2016070752 cites W1991318915 @default.
- W2016070752 cites W1995126785 @default.
- W2016070752 cites W2006023956 @default.
- W2016070752 cites W2059682003 @default.
- W2016070752 cites W2081707439 @default.
- W2016070752 cites W2095979141 @default.
- W2016070752 cites W2117646649 @default.
- W2016070752 cites W2125055259 @default.
- W2016070752 cites W2130676130 @default.
- W2016070752 cites W2169768310 @default.
- W2016070752 cites W2317690111 @default.
- W2016070752 cites W2802348331 @default.
- W2016070752 cites W2904250082 @default.
- W2016070752 cites W91862604 @default.
- W2016070752 doi "https://doi.org/10.1145/1167253.1167288" @default.
- W2016070752 hasPublicationYear "2005" @default.
- W2016070752 type Work @default.
- W2016070752 sameAs 2016070752 @default.
- W2016070752 citedByCount "238" @default.
- W2016070752 countsByYear W20160707522012 @default.
- W2016070752 countsByYear W20160707522013 @default.
- W2016070752 countsByYear W20160707522014 @default.
- W2016070752 countsByYear W20160707522015 @default.
- W2016070752 countsByYear W20160707522016 @default.
- W2016070752 countsByYear W20160707522017 @default.
- W2016070752 countsByYear W20160707522018 @default.
- W2016070752 countsByYear W20160707522019 @default.
- W2016070752 countsByYear W20160707522020 @default.
- W2016070752 countsByYear W20160707522021 @default.
- W2016070752 countsByYear W20160707522022 @default.
- W2016070752 countsByYear W20160707522023 @default.
- W2016070752 crossrefType "proceedings-article" @default.
- W2016070752 hasAuthorship W2016070752A5037787380 @default.
- W2016070752 hasAuthorship W2016070752A5071937302 @default.
- W2016070752 hasAuthorship W2016070752A5077604881 @default.
- W2016070752 hasAuthorship W2016070752A5085472103 @default.
- W2016070752 hasConcept C10229987 @default.
- W2016070752 hasConcept C119857082 @default.
- W2016070752 hasConcept C124101348 @default.
- W2016070752 hasConcept C141291300 @default.
- W2016070752 hasConcept C148483581 @default.
- W2016070752 hasConcept C153180895 @default.
- W2016070752 hasConcept C154945302 @default.
- W2016070752 hasConcept C183931066 @default.
- W2016070752 hasConcept C2776836416 @default.
- W2016070752 hasConcept C35525427 @default.
- W2016070752 hasConcept C41008148 @default.
- W2016070752 hasConcept C5481197 @default.
- W2016070752 hasConcept C77052588 @default.
- W2016070752 hasConcept C84525736 @default.
- W2016070752 hasConcept C95623464 @default.
- W2016070752 hasConceptScore W2016070752C10229987 @default.
- W2016070752 hasConceptScore W2016070752C119857082 @default.
- W2016070752 hasConceptScore W2016070752C124101348 @default.
- W2016070752 hasConceptScore W2016070752C141291300 @default.
- W2016070752 hasConceptScore W2016070752C148483581 @default.
- W2016070752 hasConceptScore W2016070752C153180895 @default.
- W2016070752 hasConceptScore W2016070752C154945302 @default.
- W2016070752 hasConceptScore W2016070752C183931066 @default.
- W2016070752 hasConceptScore W2016070752C2776836416 @default.
- W2016070752 hasConceptScore W2016070752C35525427 @default.
- W2016070752 hasConceptScore W2016070752C41008148 @default.
- W2016070752 hasConceptScore W2016070752C5481197 @default.
- W2016070752 hasConceptScore W2016070752C77052588 @default.
- W2016070752 hasConceptScore W2016070752C84525736 @default.
- W2016070752 hasConceptScore W2016070752C95623464 @default.
- W2016070752 hasLocation W20160707521 @default.
- W2016070752 hasOpenAccess W2016070752 @default.
- W2016070752 hasPrimaryLocation W20160707521 @default.
- W2016070752 hasRelatedWork W2016647367 @default.
- W2016070752 hasRelatedWork W2347445520 @default.
- W2016070752 hasRelatedWork W2360758534 @default.
- W2016070752 hasRelatedWork W2563096758 @default.
- W2016070752 hasRelatedWork W2807311372 @default.
- W2016070752 hasRelatedWork W3025830677 @default.
- W2016070752 hasRelatedWork W3037556158 @default.
- W2016070752 hasRelatedWork W3200179079 @default.