Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016074885> ?p ?o ?g. }
- W2016074885 endingPage "51" @default.
- W2016074885 startingPage "36" @default.
- W2016074885 abstract "The number of phases for which weathering rates can be determined by watershed geochemical mass balance is limited by the number of equations that can be constructed from elemental flux losses from the watershed and mineral stoichiometries. Mass balance studies of watershed weathering rates routinely use the flux losses of the six major cations SiO2, Al, Na, K, Mg, and Ca. Analyses of these species in water are common, but following matrix algebraic methods limits the number of weathering rates that can be calculated to six. For the Brubaker Run watershed located in the northern Piedmont Physiographic Province of Pennsylvania (USA), long-term (103–106 year) watershed chemical flux losses have been determined using 10Be-derived total denudation rates and zirconium-normalized total chemical concentrations from bedrock and soils. Chemical flux losses calculated from solid-phase data have three advantages: They (1) Permit generation of a relatively large number of equations because both major and trace analyses are included; (2) eliminate the need for many years of regular (e.g., weekly) sampling and chemical analyses of stream water and atmospheric precipitation, and measurement of hydrologic parameters (i.e., precipitation, stream discharge, etc.); and (3) long-term weathering rate calculations need not address biomass. For Brubaker Run, eight minerals are involved in weathering; the five primary minerals are REE-rich epidote, ankerite, almandine–spessartine garnet, muscovite, chlorite, and the three secondary products are weathered muscovite, kaolinite, and gibbsite. The long-term average weathering rates of these minerals were calculated using the six major cations, and two trace elements selected from Rb, Sr, Ba, La, Pr, Nd, Sm, Gd, and Dy. Despite having the eight equations needed, geochemically reasonable weathering rates (e.g., positive primary mineral rates that reflect destruction) could not be achieved regardless of the two trace elements used in the mass balance calculations. For Brubaker Run, this is primarily attributable to the natural heterogeneity of the trace element concentrations within the host mineral grains, with trace element stoichiometries in some minerals varying by as much as an order of magnitude. Because the trace elements are hosted by a relatively small number of minerals, the computed weathering rates of other minerals become very sensitive to small variations in trace cation stoichiometry. REE-rich epidote, garnet, and ankerite within the Brubaker Run watershed together host nearly all of the Ca in the bedrock, and completely dissolve at or near the weathering front. Consequently, approximately all of the Ca in bedrock is lost from the regolith. In bedrock the mole-percentages of Ca hosted by REE-rich epidote, garnet, and ankerite are 49 mol%, 4 mol%, and 43 mol%, respectively, and are determined by the modal abundance of the mineral in the bedrock and its Ca stoichiometry. The weathering rates of REE-rich epidote, garnet, and ankerite can be determined by distributing to each mineral that fraction of the total watershed Ca flux loss for which it is responsible based on its mole-percent Ca in bedrock. By using a base cation that is completely lost from the regolith, and knowing the mole-percentage of that element in the mineral(s) undergoing weathering, additional equations may be added to the mass balance matrix. We term this technique the “flux distribution method.” The flux distribution method eliminates the need for additional equations established using trace elements. Based on the mineral weathering rates for the Brubaker Run watershed determined using the flux distribution method, the rates at which the weathering front penetrated the bedrock (the “saprolitization” rate) are 4.5 m Myr− 1 and 6.5 m Myr− 1 for chlorite and muscovite, respectively. These measured long-term average saprolitization rates compare very favorably with published theoretical values for the nearby northern Maryland Piedmont which range from 2.2 to 5.3 m Myr− 1." @default.
- W2016074885 created "2016-06-24" @default.
- W2016074885 creator A5049680157 @default.
- W2016074885 creator A5054951361 @default.
- W2016074885 creator A5056958690 @default.
- W2016074885 creator A5087814306 @default.
- W2016074885 date "2008-08-01" @default.
- W2016074885 modified "2023-10-10" @default.
- W2016074885 title "Long-term average mineral weathering rates from watershed geochemical mass balance methods: Using mineral modal abundances to solve more equations in more unknowns" @default.
- W2016074885 cites W111262582 @default.
- W2016074885 cites W1525408879 @default.
- W2016074885 cites W1967253301 @default.
- W2016074885 cites W1967455924 @default.
- W2016074885 cites W1968753723 @default.
- W2016074885 cites W1971461287 @default.
- W2016074885 cites W1972699738 @default.
- W2016074885 cites W1973445519 @default.
- W2016074885 cites W1973455523 @default.
- W2016074885 cites W1973975686 @default.
- W2016074885 cites W1979488539 @default.
- W2016074885 cites W1980855875 @default.
- W2016074885 cites W1982487268 @default.
- W2016074885 cites W1984648659 @default.
- W2016074885 cites W1986140763 @default.
- W2016074885 cites W1991892652 @default.
- W2016074885 cites W1994292806 @default.
- W2016074885 cites W1998191793 @default.
- W2016074885 cites W2000033372 @default.
- W2016074885 cites W2000103459 @default.
- W2016074885 cites W2002606625 @default.
- W2016074885 cites W2006896663 @default.
- W2016074885 cites W2007034579 @default.
- W2016074885 cites W2007961880 @default.
- W2016074885 cites W2008560323 @default.
- W2016074885 cites W2008708401 @default.
- W2016074885 cites W2011098114 @default.
- W2016074885 cites W2011681495 @default.
- W2016074885 cites W2022683665 @default.
- W2016074885 cites W2028333593 @default.
- W2016074885 cites W2035750259 @default.
- W2016074885 cites W2036631110 @default.
- W2016074885 cites W2037224305 @default.
- W2016074885 cites W2038081055 @default.
- W2016074885 cites W2040824971 @default.
- W2016074885 cites W2047254543 @default.
- W2016074885 cites W2047859402 @default.
- W2016074885 cites W2054343546 @default.
- W2016074885 cites W2058507099 @default.
- W2016074885 cites W2066240087 @default.
- W2016074885 cites W2068643896 @default.
- W2016074885 cites W2071345686 @default.
- W2016074885 cites W2072062807 @default.
- W2016074885 cites W2075814305 @default.
- W2016074885 cites W2080011455 @default.
- W2016074885 cites W2080570970 @default.
- W2016074885 cites W2083907710 @default.
- W2016074885 cites W2084283421 @default.
- W2016074885 cites W2084849445 @default.
- W2016074885 cites W2086194699 @default.
- W2016074885 cites W2086305547 @default.
- W2016074885 cites W2087937118 @default.
- W2016074885 cites W2095352076 @default.
- W2016074885 cites W2097828895 @default.
- W2016074885 cites W2113062784 @default.
- W2016074885 cites W2123594378 @default.
- W2016074885 cites W2132221821 @default.
- W2016074885 cites W2133580579 @default.
- W2016074885 cites W2146010845 @default.
- W2016074885 cites W2146564154 @default.
- W2016074885 cites W2150803244 @default.
- W2016074885 cites W2152015161 @default.
- W2016074885 cites W2159460537 @default.
- W2016074885 cites W2164037258 @default.
- W2016074885 cites W2187468141 @default.
- W2016074885 cites W2256817368 @default.
- W2016074885 cites W2291202549 @default.
- W2016074885 cites W3022563504 @default.
- W2016074885 cites W4245300726 @default.
- W2016074885 doi "https://doi.org/10.1016/j.chemgeo.2008.05.012" @default.
- W2016074885 hasPublicationYear "2008" @default.
- W2016074885 type Work @default.
- W2016074885 sameAs 2016074885 @default.
- W2016074885 citedByCount "28" @default.
- W2016074885 countsByYear W20160748852012 @default.
- W2016074885 countsByYear W20160748852013 @default.
- W2016074885 countsByYear W20160748852014 @default.
- W2016074885 countsByYear W20160748852015 @default.
- W2016074885 countsByYear W20160748852016 @default.
- W2016074885 countsByYear W20160748852017 @default.
- W2016074885 countsByYear W20160748852019 @default.
- W2016074885 countsByYear W20160748852023 @default.
- W2016074885 crossrefType "journal-article" @default.
- W2016074885 hasAuthorship W2016074885A5049680157 @default.
- W2016074885 hasAuthorship W2016074885A5054951361 @default.
- W2016074885 hasAuthorship W2016074885A5056958690 @default.
- W2016074885 hasAuthorship W2016074885A5087814306 @default.
- W2016074885 hasConcept C114793014 @default.
- W2016074885 hasConcept C121332964 @default.