Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016075650> ?p ?o ?g. }
- W2016075650 endingPage "1248" @default.
- W2016075650 startingPage "1241" @default.
- W2016075650 abstract "The nutritional status of an organism can greatly impact the function and behavior of stem and progenitor cells [1Mihaylova M.M. Sabatini D.M. Yilmaz O.H. Dietary and metabolic control of stem cell function in physiology and cancer.Cell Stem Cell. 2014; 14: 292-305Abstract Full Text Full Text PDF PubMed Scopus (112) Google Scholar]. However, the regulatory circuits that inform these cells about the dietary environment remain to be elucidated. Newly hatched C. elegans larvae (L1s) halt development in “L1 arrest” or “L1 diapause” until ample food is encountered and triggers stem and progenitor cells to exit from quiescence [2Baugh L.R. To grow or not to grow: nutritional control of development during Caenorhabditis elegans L1 arrest.Genetics. 2013; 194: 539-555Crossref PubMed Scopus (135) Google Scholar]. The insulin/insulin-like growth factor signaling (IIS) pathway plays a key role in this reactivation [3Fukuyama M. Rougvie A.E. Rothman J.H. C. elegans DAF-18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline.Curr. Biol. 2006; 16: 773-779Abstract Full Text Full Text PDF PubMed Scopus (139) Google Scholar, 4Baugh L.R. Sternberg P.W. DAF-16/FOXO regulates transcription of cki-1/Cip/Kip and repression of lin-4 during C. elegans L1 arrest.Curr. Biol. 2006; 16: 780-785Abstract Full Text Full Text PDF PubMed Scopus (161) Google Scholar], but its site(s) of action have not been elucidated nor have the nutrient molecule(s) that stimulate the pathway been identified. By tissue-specifically modulating the activity of its components, we demonstrate that the IIS pathway acts in the hypodermis to regulate nutrition-responsive reactivation of neural and mesodermal progenitor cells. We identify ethanol, a likely component of the natural Caenorhabditis habitat, and amino acids as nutrients that synergistically reactivate somatic progenitor cells and upregulate expression of insulin-like genes in starved L1 larvae. The hypodermis likely senses the availability of amino acids because forced activation of the amino-acid-responsive Rag-TORC1 (target of rapamycin complex 1) pathway in this tissue can also release somatic progenitor cell quiescence in the presence of ethanol. Finally, there appears to be crosstalk between the IIS and Rag-TORC1 pathways because constitutive activation of the IIS pathway requires Rag to promote reactivation. This work demonstrates that ethanol and amino acids act as dietary cues via the IIS and Rag-TORC1 pathways in the hypodermis to coordinately control progenitor cell behavior." @default.
- W2016075650 created "2016-06-24" @default.
- W2016075650 creator A5029324365 @default.
- W2016075650 creator A5052342376 @default.
- W2016075650 creator A5075355508 @default.
- W2016075650 creator A5083578860 @default.
- W2016075650 date "2015-05-01" @default.
- W2016075650 modified "2023-10-01" @default.
- W2016075650 title "The C. elegans Hypodermis Couples Progenitor Cell Quiescence to the Dietary State" @default.
- W2016075650 cites W1965414585 @default.
- W2016075650 cites W1967170498 @default.
- W2016075650 cites W1967763112 @default.
- W2016075650 cites W1973185212 @default.
- W2016075650 cites W1981206208 @default.
- W2016075650 cites W1986006829 @default.
- W2016075650 cites W2004582874 @default.
- W2016075650 cites W2008616131 @default.
- W2016075650 cites W2019122851 @default.
- W2016075650 cites W2025176940 @default.
- W2016075650 cites W2032285280 @default.
- W2016075650 cites W2047495081 @default.
- W2016075650 cites W2052722944 @default.
- W2016075650 cites W2056137479 @default.
- W2016075650 cites W2057119740 @default.
- W2016075650 cites W2059692699 @default.
- W2016075650 cites W2085359407 @default.
- W2016075650 cites W2091270548 @default.
- W2016075650 cites W2095037640 @default.
- W2016075650 cites W2095785516 @default.
- W2016075650 cites W2097860556 @default.
- W2016075650 cites W2102545933 @default.
- W2016075650 cites W2102648794 @default.
- W2016075650 cites W2111223240 @default.
- W2016075650 cites W2122458935 @default.
- W2016075650 cites W2143126693 @default.
- W2016075650 cites W2144498949 @default.
- W2016075650 cites W2145079074 @default.
- W2016075650 cites W2153552867 @default.
- W2016075650 cites W2154492025 @default.
- W2016075650 cites W2157230352 @default.
- W2016075650 cites W2166222890 @default.
- W2016075650 doi "https://doi.org/10.1016/j.cub.2015.03.016" @default.
- W2016075650 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25891400" @default.
- W2016075650 hasPublicationYear "2015" @default.
- W2016075650 type Work @default.
- W2016075650 sameAs 2016075650 @default.
- W2016075650 citedByCount "39" @default.
- W2016075650 countsByYear W20160756502015 @default.
- W2016075650 countsByYear W20160756502016 @default.
- W2016075650 countsByYear W20160756502017 @default.
- W2016075650 countsByYear W20160756502018 @default.
- W2016075650 countsByYear W20160756502019 @default.
- W2016075650 countsByYear W20160756502020 @default.
- W2016075650 countsByYear W20160756502021 @default.
- W2016075650 countsByYear W20160756502022 @default.
- W2016075650 countsByYear W20160756502023 @default.
- W2016075650 crossrefType "journal-article" @default.
- W2016075650 hasAuthorship W2016075650A5029324365 @default.
- W2016075650 hasAuthorship W2016075650A5052342376 @default.
- W2016075650 hasAuthorship W2016075650A5075355508 @default.
- W2016075650 hasAuthorship W2016075650A5083578860 @default.
- W2016075650 hasBestOaLocation W20160756501 @default.
- W2016075650 hasConcept C104317684 @default.
- W2016075650 hasConcept C105696609 @default.
- W2016075650 hasConcept C1491633281 @default.
- W2016075650 hasConcept C15729860 @default.
- W2016075650 hasConcept C201750760 @default.
- W2016075650 hasConcept C2777609662 @default.
- W2016075650 hasConcept C2778944004 @default.
- W2016075650 hasConcept C2779473830 @default.
- W2016075650 hasConcept C28328180 @default.
- W2016075650 hasConcept C29537977 @default.
- W2016075650 hasConcept C502942594 @default.
- W2016075650 hasConcept C54355233 @default.
- W2016075650 hasConcept C55493867 @default.
- W2016075650 hasConcept C62112901 @default.
- W2016075650 hasConcept C62478195 @default.
- W2016075650 hasConcept C83867959 @default.
- W2016075650 hasConcept C86339819 @default.
- W2016075650 hasConcept C86554907 @default.
- W2016075650 hasConcept C86803240 @default.
- W2016075650 hasConcept C95444343 @default.
- W2016075650 hasConceptScore W2016075650C104317684 @default.
- W2016075650 hasConceptScore W2016075650C105696609 @default.
- W2016075650 hasConceptScore W2016075650C1491633281 @default.
- W2016075650 hasConceptScore W2016075650C15729860 @default.
- W2016075650 hasConceptScore W2016075650C201750760 @default.
- W2016075650 hasConceptScore W2016075650C2777609662 @default.
- W2016075650 hasConceptScore W2016075650C2778944004 @default.
- W2016075650 hasConceptScore W2016075650C2779473830 @default.
- W2016075650 hasConceptScore W2016075650C28328180 @default.
- W2016075650 hasConceptScore W2016075650C29537977 @default.
- W2016075650 hasConceptScore W2016075650C502942594 @default.
- W2016075650 hasConceptScore W2016075650C54355233 @default.
- W2016075650 hasConceptScore W2016075650C55493867 @default.
- W2016075650 hasConceptScore W2016075650C62112901 @default.
- W2016075650 hasConceptScore W2016075650C62478195 @default.
- W2016075650 hasConceptScore W2016075650C83867959 @default.