Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016089503> ?p ?o ?g. }
- W2016089503 endingPage "164" @default.
- W2016089503 startingPage "156" @default.
- W2016089503 abstract "Accuracy assessment plays a crucial role in the implementation of soft classification. Even though many indices of accuracy assessment for soft classification have been proposed, the consistencies among these indices are not clear, and the impact of sample size on these consistencies has not been investigated. This paper examines two kinds of indices: map-level indices, including root mean square error (rmse), kappa, and overall accuracy (oa) from the sub-pixel confusion matrix (SCM); and category-level indices, including crmse, user accuracy (ua) and producer accuracy (pa). A careful simulation was conducted to investigate the consistency of these indices and the effect of sample size. The major findings were as follows: (1) The map-level indices are highly consistent with each other, whereas the category-level indices are not. (2) The consistency among map-level and category-level indices becomes weaker when the sample size decreases. (3) The rmse is more affected by error distribution among classes than are kappa and oa. Based on these results, we recommend that rmse can be used for map-level accuracy due to its simplicity, although kappa and oa may be better alternatives when the sample size is limited because the two indices are affected less by the error distribution among classes. We also suggest that crmse should be provided when map users are not concerned about the error source, whereas ua and pa are more useful when the complete information about different errors is required. The results of this study will be of benefit to the development and application of soft classifiers." @default.
- W2016089503 created "2016-06-24" @default.
- W2016089503 creator A5032109361 @default.
- W2016089503 creator A5050294380 @default.
- W2016089503 creator A5055815344 @default.
- W2016089503 creator A5089564180 @default.
- W2016089503 date "2010-03-01" @default.
- W2016089503 modified "2023-09-27" @default.
- W2016089503 title "Consistency of accuracy assessment indices for soft classification: Simulation analysis" @default.
- W2016089503 cites W1967329996 @default.
- W2016089503 cites W1974126321 @default.
- W2016089503 cites W1976193075 @default.
- W2016089503 cites W1985514943 @default.
- W2016089503 cites W1997005542 @default.
- W2016089503 cites W2000229595 @default.
- W2016089503 cites W2001267978 @default.
- W2016089503 cites W2001801361 @default.
- W2016089503 cites W2010797227 @default.
- W2016089503 cites W2013062088 @default.
- W2016089503 cites W2013648735 @default.
- W2016089503 cites W2044300373 @default.
- W2016089503 cites W2046280714 @default.
- W2016089503 cites W2054116204 @default.
- W2016089503 cites W2060384859 @default.
- W2016089503 cites W2063149109 @default.
- W2016089503 cites W2081346329 @default.
- W2016089503 cites W2090792150 @default.
- W2016089503 cites W2093449469 @default.
- W2016089503 cites W2095795470 @default.
- W2016089503 cites W2109784289 @default.
- W2016089503 cites W2114828048 @default.
- W2016089503 cites W2115650663 @default.
- W2016089503 cites W2124652809 @default.
- W2016089503 cites W2125401957 @default.
- W2016089503 cites W2127431974 @default.
- W2016089503 cites W2129386579 @default.
- W2016089503 cites W2130018701 @default.
- W2016089503 cites W2135545639 @default.
- W2016089503 cites W2138973222 @default.
- W2016089503 cites W2149490731 @default.
- W2016089503 cites W2161846988 @default.
- W2016089503 cites W2168481151 @default.
- W2016089503 cites W2170186417 @default.
- W2016089503 doi "https://doi.org/10.1016/j.isprsjprs.2009.10.003" @default.
- W2016089503 hasPublicationYear "2010" @default.
- W2016089503 type Work @default.
- W2016089503 sameAs 2016089503 @default.
- W2016089503 citedByCount "18" @default.
- W2016089503 countsByYear W20160895032012 @default.
- W2016089503 countsByYear W20160895032013 @default.
- W2016089503 countsByYear W20160895032014 @default.
- W2016089503 countsByYear W20160895032015 @default.
- W2016089503 countsByYear W20160895032016 @default.
- W2016089503 countsByYear W20160895032017 @default.
- W2016089503 countsByYear W20160895032018 @default.
- W2016089503 countsByYear W20160895032021 @default.
- W2016089503 countsByYear W20160895032022 @default.
- W2016089503 crossrefType "journal-article" @default.
- W2016089503 hasAuthorship W2016089503A5032109361 @default.
- W2016089503 hasAuthorship W2016089503A5050294380 @default.
- W2016089503 hasAuthorship W2016089503A5055815344 @default.
- W2016089503 hasAuthorship W2016089503A5089564180 @default.
- W2016089503 hasConcept C105795698 @default.
- W2016089503 hasConcept C11171543 @default.
- W2016089503 hasConcept C124101348 @default.
- W2016089503 hasConcept C129848803 @default.
- W2016089503 hasConcept C138602881 @default.
- W2016089503 hasConcept C139945424 @default.
- W2016089503 hasConcept C154945302 @default.
- W2016089503 hasConcept C15744967 @default.
- W2016089503 hasConcept C163864269 @default.
- W2016089503 hasConcept C185592680 @default.
- W2016089503 hasConcept C198531522 @default.
- W2016089503 hasConcept C2524010 @default.
- W2016089503 hasConcept C2776436953 @default.
- W2016089503 hasConcept C2778724333 @default.
- W2016089503 hasConcept C2781140086 @default.
- W2016089503 hasConcept C33923547 @default.
- W2016089503 hasConcept C41008148 @default.
- W2016089503 hasConcept C43617362 @default.
- W2016089503 hasConceptScore W2016089503C105795698 @default.
- W2016089503 hasConceptScore W2016089503C11171543 @default.
- W2016089503 hasConceptScore W2016089503C124101348 @default.
- W2016089503 hasConceptScore W2016089503C129848803 @default.
- W2016089503 hasConceptScore W2016089503C138602881 @default.
- W2016089503 hasConceptScore W2016089503C139945424 @default.
- W2016089503 hasConceptScore W2016089503C154945302 @default.
- W2016089503 hasConceptScore W2016089503C15744967 @default.
- W2016089503 hasConceptScore W2016089503C163864269 @default.
- W2016089503 hasConceptScore W2016089503C185592680 @default.
- W2016089503 hasConceptScore W2016089503C198531522 @default.
- W2016089503 hasConceptScore W2016089503C2524010 @default.
- W2016089503 hasConceptScore W2016089503C2776436953 @default.
- W2016089503 hasConceptScore W2016089503C2778724333 @default.
- W2016089503 hasConceptScore W2016089503C2781140086 @default.
- W2016089503 hasConceptScore W2016089503C33923547 @default.
- W2016089503 hasConceptScore W2016089503C41008148 @default.
- W2016089503 hasConceptScore W2016089503C43617362 @default.