Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016089558> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2016089558 endingPage "89" @default.
- W2016089558 startingPage "89" @default.
- W2016089558 abstract "The unprecedented availability of chemical and biological structure-property data is creating new opportunities for cheminformatics and QSAR. This major shift in the perception of QSAR is fostered by both scientific and societal causes. From a scientific standpoint, massive amounts of data requiring interpretation and modelling have accumulated due to high throughput biology and chemistry. At the societal level, the open-access movement has facilitated the production of large-scale databases such as PubChem and ChEMBL, which are complemented by for-fee databases. As access to massive amounts of data is no longer a hindrance, the demand for predictive models based on molecular structures has increased. Until recently, QSAR technologies have primarily been utilized retrospectively (e.g., the QSAR equations), yet now the emphasis is on prospective use (e.g., virtual screening). Their accuracy relies on deep knowledge mining, increased data completeness and advances in machine learning. Paralleled by significant improvements in hardware and computational power, these technologies have resulted in increasingly more efficient approaches to drug discovery and active compound design. Our ability to understand molecular determinants and their contribution to the design of therapeutic agents, agrochemicals, and flavor and fragrance modifiers has witnessed dramatic improvements in the five decades of QSAR formalism. Such improvements, as well as practical applications of cheminformatics and QSAR technologies were discussed at the 18th European Symposium on Quantitative Structure Activity Relationships in Rhodes, Greece (September 2010), where the main theme was “Discovery Informatics in Drug Design”. From systems biology and its disease chemical biology application, ChemProt, to biologically-oriented chemical synthesis (BIOS), and from in silico pharmacology to interactive, efficient navigation and visualisation tools, the field of cheminformatics has evolved significantly in the past decade. We have the ability to identify novel targets and to identify their binding site(s) and to identify and suggest novel chemical scaffolds in a rational manner. In silico tools for drug discovery are becoming a necessity, one that begins to extend into clinical, in addition to chemical and biological spaces. Such evolving technologies are designed to assist translational scientists, chemists and biologists with seemingly intractable problems: From medical informatics rooted data mining of adverse events to structure- and ligand- based virtual screening, and from physico-chemical and early pharmacokinetic properties to drug safety and toxicology, cheminformatics and QSAR technologies are a living example of how necessity, adaptive developments and creativity, all aspects of scientific endeavour, converge in order to achieve a balanced, streamlined effort in our quest for novel therapeutics. The future of QSAR has never looked brighter. 1 Tudor I. Oprea Member of Organizing & Scientific Committees 18th European Symposium on Quantitative Structure-Activity Relationships Chair The Cheminformatics & QSAR Society Professor and Chief Division of Biocomputing, UNM School of Medicine Guest Professor Center for Biological Sequence Analysis, Technical University of Denmark" @default.
- W2016089558 created "2016-06-24" @default.
- W2016089558 creator A5061685157 @default.
- W2016089558 date "2011-03-14" @default.
- W2016089558 modified "2023-09-23" @default.
- W2016089558 title "Next-generation QSAR" @default.
- W2016089558 doi "https://doi.org/10.1002/minf.201180001" @default.
- W2016089558 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27466761" @default.
- W2016089558 hasPublicationYear "2011" @default.
- W2016089558 type Work @default.
- W2016089558 sameAs 2016089558 @default.
- W2016089558 citedByCount "1" @default.
- W2016089558 countsByYear W20160895582012 @default.
- W2016089558 crossrefType "journal-article" @default.
- W2016089558 hasAuthorship W2016089558A5061685157 @default.
- W2016089558 hasBestOaLocation W20160895581 @default.
- W2016089558 hasConcept C107908354 @default.
- W2016089558 hasConcept C119599485 @default.
- W2016089558 hasConcept C119857082 @default.
- W2016089558 hasConcept C127413603 @default.
- W2016089558 hasConcept C147597530 @default.
- W2016089558 hasConcept C154945302 @default.
- W2016089558 hasConcept C158180186 @default.
- W2016089558 hasConcept C164126121 @default.
- W2016089558 hasConcept C183696295 @default.
- W2016089558 hasConcept C185592680 @default.
- W2016089558 hasConcept C191630685 @default.
- W2016089558 hasConcept C2522767166 @default.
- W2016089558 hasConcept C41008148 @default.
- W2016089558 hasConcept C60644358 @default.
- W2016089558 hasConcept C63222358 @default.
- W2016089558 hasConcept C68762167 @default.
- W2016089558 hasConcept C70721500 @default.
- W2016089558 hasConcept C74187038 @default.
- W2016089558 hasConcept C86803240 @default.
- W2016089558 hasConcept C99726746 @default.
- W2016089558 hasConceptScore W2016089558C107908354 @default.
- W2016089558 hasConceptScore W2016089558C119599485 @default.
- W2016089558 hasConceptScore W2016089558C119857082 @default.
- W2016089558 hasConceptScore W2016089558C127413603 @default.
- W2016089558 hasConceptScore W2016089558C147597530 @default.
- W2016089558 hasConceptScore W2016089558C154945302 @default.
- W2016089558 hasConceptScore W2016089558C158180186 @default.
- W2016089558 hasConceptScore W2016089558C164126121 @default.
- W2016089558 hasConceptScore W2016089558C183696295 @default.
- W2016089558 hasConceptScore W2016089558C185592680 @default.
- W2016089558 hasConceptScore W2016089558C191630685 @default.
- W2016089558 hasConceptScore W2016089558C2522767166 @default.
- W2016089558 hasConceptScore W2016089558C41008148 @default.
- W2016089558 hasConceptScore W2016089558C60644358 @default.
- W2016089558 hasConceptScore W2016089558C63222358 @default.
- W2016089558 hasConceptScore W2016089558C68762167 @default.
- W2016089558 hasConceptScore W2016089558C70721500 @default.
- W2016089558 hasConceptScore W2016089558C74187038 @default.
- W2016089558 hasConceptScore W2016089558C86803240 @default.
- W2016089558 hasConceptScore W2016089558C99726746 @default.
- W2016089558 hasIssue "2-3" @default.
- W2016089558 hasLocation W20160895581 @default.
- W2016089558 hasLocation W20160895582 @default.
- W2016089558 hasOpenAccess W2016089558 @default.
- W2016089558 hasPrimaryLocation W20160895581 @default.
- W2016089558 hasRelatedWork W2001424887 @default.
- W2016089558 hasRelatedWork W2315136930 @default.
- W2016089558 hasRelatedWork W2418371935 @default.
- W2016089558 hasRelatedWork W2780675302 @default.
- W2016089558 hasRelatedWork W2887866551 @default.
- W2016089558 hasRelatedWork W3206481143 @default.
- W2016089558 hasRelatedWork W4291624975 @default.
- W2016089558 hasRelatedWork W4319924597 @default.
- W2016089558 hasRelatedWork W4379197245 @default.
- W2016089558 hasRelatedWork W4386162080 @default.
- W2016089558 hasVolume "30" @default.
- W2016089558 isParatext "false" @default.
- W2016089558 isRetracted "false" @default.
- W2016089558 magId "2016089558" @default.
- W2016089558 workType "article" @default.