Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016093619> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2016093619 endingPage "427" @default.
- W2016093619 startingPage "415" @default.
- W2016093619 abstract "object of the present memoir is the further development of the theory of binary ntics; it should therefore have preceded so much of my third memoir, t. 147 (1857), 27, as relates to ternary quadrics and cubics. The paragraphs are numbered conously with those of the former memoirs. The first three paragraphs, Nos. 62 to 64, te to quantics of the general form (*)( x, y ,..) m , and they are intended to complete series of definitions and explanations given in Nos. 54 to 61 of my third memoir; 68 to 71, although introduced in reference to binary quantics, relate or may be dered as relating to quantics of the like general form. But with these exceptions memoir relates to binary quantics of any order whatever: viz. No. 65 to 80 relate he covariants and invariants of the degrees 2, 3 and 4; Nos. 81 and 82 (which are xluced somewhat parenthetically) contain the explanation of a process for the alation of the invariant called the Discriminant; Nos. 83 to 85 contain the definitions he Catalecticant, the Lambdaic and the Canonisant, which are functions occurring in ’essor Sylvester’s theory of the reduction of a binary quantic to its canonical form; Nos. 86 to 91 contain the definitions of certain co variants or other derivatives coned with Bezouts abbreviated method of elimination, due for the most part to Pro- Sylvester, and which are called Bezoutiants, Cobezoutiants, &c. I have not in present memoir in any wise considered the theories to which the catalecticant, &c. the last-mentioned other co variants and derivatives relate; the design is to point ind precisely define the different covariants or other derivatives which have hitherto ented themselves in theories relating to binary quantics, and so to complete, as far ay be, the explanation of the terminology of this part of the subject. If we consider a quantic ( a, b ,..)( x, y ,...) m an adjoint linear form, the operative quantic ( a, b ,..)(∂ e , ∂ n ,...) m ore generally the operative quantic obtained by replacing in any covariant of the quantic the facients ( x , y ,..) by the symbols of differentiation (∂ e , ∂ n ,...) ore generally the operative quantic obtained by replacing in any covariant of the quantic the facients ( x, y , ..) by the symbols of differentiation (∂ e , ∂ n ,...) (which ative quantic is, so to speak, a contravariant operator), may be termed the Pro - r; and the Provector operating upon any contravariant gives rise to a contravariant, h may of course be an invariant. Any such contravariant, or rather such con-iriant considered as so generated, may be termed a Provectant ; and in like manner operative quantic obtained by replacing in any contravariant of the given quantic the facients ( ξ , n ..) by the symbols of differentiation (∂ x , ∂ y ,...) (which opera quantic is a covariant operator), is termed the Contraprovector ; and the contraprove operating upon any covariant gives rise to a covariant, which may of course be an irriant. Any such covariant, or rather such covariant considered as so generated, may termed a Contraprovectant ." @default.
- W2016093619 created "2016-06-24" @default.
- W2016093619 date "1858-12-31" @default.
- W2016093619 modified "2023-09-25" @default.
- W2016093619 title "XXII. A fourth memoir upon quantics" @default.
- W2016093619 doi "https://doi.org/10.1098/rstl.1858.0022" @default.
- W2016093619 hasPublicationYear "1858" @default.
- W2016093619 type Work @default.
- W2016093619 sameAs 2016093619 @default.
- W2016093619 citedByCount "4" @default.
- W2016093619 countsByYear W20160936192023 @default.
- W2016093619 crossrefType "journal-article" @default.
- W2016093619 hasConcept C124952713 @default.
- W2016093619 hasConcept C138885662 @default.
- W2016093619 hasConcept C142362112 @default.
- W2016093619 hasConcept C154945302 @default.
- W2016093619 hasConcept C177897776 @default.
- W2016093619 hasConcept C190470478 @default.
- W2016093619 hasConcept C202444582 @default.
- W2016093619 hasConcept C33923547 @default.
- W2016093619 hasConcept C37914503 @default.
- W2016093619 hasConcept C41008148 @default.
- W2016093619 hasConcept C48372109 @default.
- W2016093619 hasConcept C78397625 @default.
- W2016093619 hasConcept C94375191 @default.
- W2016093619 hasConceptScore W2016093619C124952713 @default.
- W2016093619 hasConceptScore W2016093619C138885662 @default.
- W2016093619 hasConceptScore W2016093619C142362112 @default.
- W2016093619 hasConceptScore W2016093619C154945302 @default.
- W2016093619 hasConceptScore W2016093619C177897776 @default.
- W2016093619 hasConceptScore W2016093619C190470478 @default.
- W2016093619 hasConceptScore W2016093619C202444582 @default.
- W2016093619 hasConceptScore W2016093619C33923547 @default.
- W2016093619 hasConceptScore W2016093619C37914503 @default.
- W2016093619 hasConceptScore W2016093619C41008148 @default.
- W2016093619 hasConceptScore W2016093619C48372109 @default.
- W2016093619 hasConceptScore W2016093619C78397625 @default.
- W2016093619 hasConceptScore W2016093619C94375191 @default.
- W2016093619 hasLocation W20160936191 @default.
- W2016093619 hasOpenAccess W2016093619 @default.
- W2016093619 hasPrimaryLocation W20160936191 @default.
- W2016093619 hasRelatedWork W1966947787 @default.
- W2016093619 hasRelatedWork W1981909949 @default.
- W2016093619 hasRelatedWork W2002850650 @default.
- W2016093619 hasRelatedWork W2076912093 @default.
- W2016093619 hasRelatedWork W2088544526 @default.
- W2016093619 hasRelatedWork W2601471357 @default.
- W2016093619 hasRelatedWork W2767905351 @default.
- W2016093619 hasRelatedWork W2901496727 @default.
- W2016093619 hasRelatedWork W2963632507 @default.
- W2016093619 hasRelatedWork W3123213595 @default.
- W2016093619 hasVolume "148" @default.
- W2016093619 isParatext "false" @default.
- W2016093619 isRetracted "false" @default.
- W2016093619 magId "2016093619" @default.
- W2016093619 workType "article" @default.