Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016094517> ?p ?o ?g. }
- W2016094517 endingPage "87" @default.
- W2016094517 startingPage "75" @default.
- W2016094517 abstract "Sightability models are binary logistic-regression models used to estimate and adjust for visibility bias in wildlife-population surveys. Like many models in wildlife and ecology, sightability models are typically developed from small observational datasets with many candidate predictors. Aggressive model-selection methods are often employed to choose a best model for prediction and effect estimation, despite evidence that such methods can lead to overfitting (i.e., selected models may describe random error or noise rather than true predictor–response curves) and poor predictive ability. We used moose (Alces alces) sightability data from northeastern Minnesota (2005–2007) as a case study to illustrate an alternative approach, which we refer to as degrees-of-freedom (df) spending: sample-size guidelines are used to determine an acceptable level of model complexity and then a pre-specified model is fit to the data and used for inference. For comparison, we also constructed sightability models using Akaike's Information Criterion (AIC) step-down procedures and model averaging (based on a small set of models developed using df-spending guidelines). We used bootstrap procedures to mimic the process of model fitting and prediction, and to compute an index of overfitting, expected predictive accuracy, and model-selection uncertainty. The index of overfitting increased 13% when the number of candidate predictors was increased from three to eight and a best model was selected using step-down procedures. Likewise, model-selection uncertainty increased when the number of candidate predictors increased. Model averaging (based on R = 30 models with 1–3 predictors) effectively shrunk regression coefficients toward zero and produced similar estimates of precision to our 3-df pre-specified model. As such, model averaging may help to guard against overfitting when too many predictors are considered (relative to available sample size). The set of candidate models will influence the extent to which coefficients are shrunk toward zero, which has implications for how one might apply model averaging to problems traditionally approached using variable-selection methods. We often recommend the df-spending approach in our consulting work because it is easy to implement and it naturally forces investigators to think carefully about their models and predictors. Nonetheless, similar concepts should apply whether one is fitting 1 model or using multi-model inference. For example, model-building decisions should consider the effective sample size, and potential predictors should be screened (without looking at their relationship to the response) for missing data, narrow distributions, collinearity, potentially overly influential observations, and measurement errors (e.g., via logical error checks). © 2011 The Wildlife Society." @default.
- W2016094517 created "2016-06-24" @default.
- W2016094517 creator A5017311501 @default.
- W2016094517 creator A5024679095 @default.
- W2016094517 creator A5030821429 @default.
- W2016094517 date "2011-09-16" @default.
- W2016094517 modified "2023-09-23" @default.
- W2016094517 title "Spending degrees of freedom in a poor economy: A case study of building a sightability model for moose in northeastern Minnesota" @default.
- W2016094517 cites W1599304806 @default.
- W2016094517 cites W1980370194 @default.
- W2016094517 cites W1989149883 @default.
- W2016094517 cites W1997542592 @default.
- W2016094517 cites W2018928538 @default.
- W2016094517 cites W2040361051 @default.
- W2016094517 cites W2047164113 @default.
- W2016094517 cites W2049228615 @default.
- W2016094517 cites W2052779929 @default.
- W2016094517 cites W2060932845 @default.
- W2016094517 cites W2066332484 @default.
- W2016094517 cites W2066772641 @default.
- W2016094517 cites W2090679459 @default.
- W2016094517 cites W2106699414 @default.
- W2016094517 cites W2109325327 @default.
- W2016094517 cites W2112169614 @default.
- W2016094517 cites W2112470283 @default.
- W2016094517 cites W2123485214 @default.
- W2016094517 cites W2128966321 @default.
- W2016094517 cites W2153731457 @default.
- W2016094517 cites W2165786903 @default.
- W2016094517 cites W2167122694 @default.
- W2016094517 cites W2186515271 @default.
- W2016094517 cites W2312300484 @default.
- W2016094517 cites W2313924780 @default.
- W2016094517 cites W2313970805 @default.
- W2016094517 cites W2315551490 @default.
- W2016094517 cites W2316337500 @default.
- W2016094517 cites W2316995484 @default.
- W2016094517 cites W2318806192 @default.
- W2016094517 cites W2319325349 @default.
- W2016094517 cites W2328221536 @default.
- W2016094517 cites W2335366738 @default.
- W2016094517 cites W2483478066 @default.
- W2016094517 cites W3175417087 @default.
- W2016094517 cites W4205839330 @default.
- W2016094517 cites W4240819508 @default.
- W2016094517 doi "https://doi.org/10.1002/jwmg.213" @default.
- W2016094517 hasPublicationYear "2011" @default.
- W2016094517 type Work @default.
- W2016094517 sameAs 2016094517 @default.
- W2016094517 citedByCount "49" @default.
- W2016094517 countsByYear W20160945172012 @default.
- W2016094517 countsByYear W20160945172013 @default.
- W2016094517 countsByYear W20160945172014 @default.
- W2016094517 countsByYear W20160945172015 @default.
- W2016094517 countsByYear W20160945172016 @default.
- W2016094517 countsByYear W20160945172017 @default.
- W2016094517 countsByYear W20160945172018 @default.
- W2016094517 countsByYear W20160945172019 @default.
- W2016094517 countsByYear W20160945172020 @default.
- W2016094517 countsByYear W20160945172021 @default.
- W2016094517 countsByYear W20160945172022 @default.
- W2016094517 countsByYear W20160945172023 @default.
- W2016094517 crossrefType "journal-article" @default.
- W2016094517 hasAuthorship W2016094517A5017311501 @default.
- W2016094517 hasAuthorship W2016094517A5024679095 @default.
- W2016094517 hasAuthorship W2016094517A5030821429 @default.
- W2016094517 hasConcept C105795698 @default.
- W2016094517 hasConcept C119857082 @default.
- W2016094517 hasConcept C121332964 @default.
- W2016094517 hasConcept C126674687 @default.
- W2016094517 hasConcept C144024400 @default.
- W2016094517 hasConcept C149782125 @default.
- W2016094517 hasConcept C149923435 @default.
- W2016094517 hasConcept C151956035 @default.
- W2016094517 hasConcept C208081375 @default.
- W2016094517 hasConcept C22019652 @default.
- W2016094517 hasConcept C2908647359 @default.
- W2016094517 hasConcept C33923547 @default.
- W2016094517 hasConcept C41008148 @default.
- W2016094517 hasConcept C50644808 @default.
- W2016094517 hasConcept C62520636 @default.
- W2016094517 hasConcept C81917197 @default.
- W2016094517 hasConcept C93959086 @default.
- W2016094517 hasConceptScore W2016094517C105795698 @default.
- W2016094517 hasConceptScore W2016094517C119857082 @default.
- W2016094517 hasConceptScore W2016094517C121332964 @default.
- W2016094517 hasConceptScore W2016094517C126674687 @default.
- W2016094517 hasConceptScore W2016094517C144024400 @default.
- W2016094517 hasConceptScore W2016094517C149782125 @default.
- W2016094517 hasConceptScore W2016094517C149923435 @default.
- W2016094517 hasConceptScore W2016094517C151956035 @default.
- W2016094517 hasConceptScore W2016094517C208081375 @default.
- W2016094517 hasConceptScore W2016094517C22019652 @default.
- W2016094517 hasConceptScore W2016094517C2908647359 @default.
- W2016094517 hasConceptScore W2016094517C33923547 @default.
- W2016094517 hasConceptScore W2016094517C41008148 @default.
- W2016094517 hasConceptScore W2016094517C50644808 @default.
- W2016094517 hasConceptScore W2016094517C62520636 @default.