Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016096482> ?p ?o ?g. }
- W2016096482 endingPage "8" @default.
- W2016096482 startingPage "1" @default.
- W2016096482 abstract "The main objective of this paper is to precisely classify surface and subsurface cracks and cavities using a feature-based giant magnetoresistive pulsed eddy-current (PEC) sensor. Based on the author's previous work involving amplitude spectral analysis combined with wavelet decomposition, the power spectral density analysis of the direct differential PEC response, and the reconstructed approximate and detail components of wavelet transform are performed to extract the defect feature. Principal component analysis (PCA) is designed to eliminate the dimensional method, which is identified with the ability to supply the low-dimensional feature. PCA confused linear discriminant analysis and the Bayesian classifier are both applied for defect classification. The experimental results reveal that cracks and cavities on the surface and subsurface can be classified satisfactorily by the proposed methods that have the potential for gauging automatic in situ inspection for PEC." @default.
- W2016096482 created "2016-06-24" @default.
- W2016096482 creator A5009170666 @default.
- W2016096482 creator A5021922944 @default.
- W2016096482 creator A5031739150 @default.
- W2016096482 creator A5042927335 @default.
- W2016096482 creator A5062722060 @default.
- W2016096482 creator A5073578825 @default.
- W2016096482 date "2014-09-01" @default.
- W2016096482 modified "2023-09-25" @default.
- W2016096482 title "Defect Classification by Pulsed Eddy-Current Technique Based on Power Spectral Density Analysis Combined With Wavelet Transform" @default.
- W2016096482 cites W1966760175 @default.
- W2016096482 cites W1967786605 @default.
- W2016096482 cites W1967840935 @default.
- W2016096482 cites W1970556747 @default.
- W2016096482 cites W1980221648 @default.
- W2016096482 cites W1985195552 @default.
- W2016096482 cites W1997208149 @default.
- W2016096482 cites W2014549269 @default.
- W2016096482 cites W2021488086 @default.
- W2016096482 cites W2024939205 @default.
- W2016096482 cites W2028491935 @default.
- W2016096482 cites W2029234169 @default.
- W2016096482 cites W2039348045 @default.
- W2016096482 cites W2051791066 @default.
- W2016096482 cites W2051901894 @default.
- W2016096482 cites W2053376760 @default.
- W2016096482 cites W2061999648 @default.
- W2016096482 cites W2063562380 @default.
- W2016096482 cites W2066272043 @default.
- W2016096482 cites W2067305190 @default.
- W2016096482 cites W2067583888 @default.
- W2016096482 cites W2068708435 @default.
- W2016096482 cites W2084038813 @default.
- W2016096482 cites W2092317972 @default.
- W2016096482 cites W2094590722 @default.
- W2016096482 cites W2099545741 @default.
- W2016096482 cites W2106822551 @default.
- W2016096482 cites W2118835935 @default.
- W2016096482 cites W2148229507 @default.
- W2016096482 cites W2167086545 @default.
- W2016096482 cites W2320384093 @default.
- W2016096482 cites W52836921 @default.
- W2016096482 doi "https://doi.org/10.1109/tmag.2014.2320882" @default.
- W2016096482 hasPublicationYear "2014" @default.
- W2016096482 type Work @default.
- W2016096482 sameAs 2016096482 @default.
- W2016096482 citedByCount "10" @default.
- W2016096482 countsByYear W20160964822017 @default.
- W2016096482 countsByYear W20160964822019 @default.
- W2016096482 countsByYear W20160964822020 @default.
- W2016096482 countsByYear W20160964822021 @default.
- W2016096482 countsByYear W20160964822022 @default.
- W2016096482 countsByYear W20160964822023 @default.
- W2016096482 crossrefType "journal-article" @default.
- W2016096482 hasAuthorship W2016096482A5009170666 @default.
- W2016096482 hasAuthorship W2016096482A5021922944 @default.
- W2016096482 hasAuthorship W2016096482A5031739150 @default.
- W2016096482 hasAuthorship W2016096482A5042927335 @default.
- W2016096482 hasAuthorship W2016096482A5062722060 @default.
- W2016096482 hasAuthorship W2016096482A5073578825 @default.
- W2016096482 hasConcept C121332964 @default.
- W2016096482 hasConcept C131357438 @default.
- W2016096482 hasConcept C138885662 @default.
- W2016096482 hasConcept C153180895 @default.
- W2016096482 hasConcept C154945302 @default.
- W2016096482 hasConcept C155777637 @default.
- W2016096482 hasConcept C168110828 @default.
- W2016096482 hasConcept C192562407 @default.
- W2016096482 hasConcept C196216189 @default.
- W2016096482 hasConcept C27438332 @default.
- W2016096482 hasConcept C2776401178 @default.
- W2016096482 hasConcept C41008148 @default.
- W2016096482 hasConcept C41895202 @default.
- W2016096482 hasConcept C46286280 @default.
- W2016096482 hasConcept C47432892 @default.
- W2016096482 hasConcept C52622490 @default.
- W2016096482 hasConcept C62520636 @default.
- W2016096482 hasConcept C6441794 @default.
- W2016096482 hasConcept C69738355 @default.
- W2016096482 hasConcept C76155785 @default.
- W2016096482 hasConceptScore W2016096482C121332964 @default.
- W2016096482 hasConceptScore W2016096482C131357438 @default.
- W2016096482 hasConceptScore W2016096482C138885662 @default.
- W2016096482 hasConceptScore W2016096482C153180895 @default.
- W2016096482 hasConceptScore W2016096482C154945302 @default.
- W2016096482 hasConceptScore W2016096482C155777637 @default.
- W2016096482 hasConceptScore W2016096482C168110828 @default.
- W2016096482 hasConceptScore W2016096482C192562407 @default.
- W2016096482 hasConceptScore W2016096482C196216189 @default.
- W2016096482 hasConceptScore W2016096482C27438332 @default.
- W2016096482 hasConceptScore W2016096482C2776401178 @default.
- W2016096482 hasConceptScore W2016096482C41008148 @default.
- W2016096482 hasConceptScore W2016096482C41895202 @default.
- W2016096482 hasConceptScore W2016096482C46286280 @default.
- W2016096482 hasConceptScore W2016096482C47432892 @default.
- W2016096482 hasConceptScore W2016096482C52622490 @default.
- W2016096482 hasConceptScore W2016096482C62520636 @default.