Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016110898> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2016110898 endingPage "884" @default.
- W2016110898 startingPage "874" @default.
- W2016110898 abstract "COSMIC Function Points and traditional Function Points (i.e., IFPUG Function Points and more recent variation of Function Points, such as NESMA and FISMA) are probably the best known and most widely used Functional Size Measurement methods. The relationship between the two kinds of Function Points still needs to be investigated. If traditional Function Points could be accurately converted into COSMIC Function Points and vice versa, then, by measuring one kind of Function Points, one would be able to obtain the other kind of Function Points, and one might measure one or the other kind interchangeably. Several studies have been performed to evaluate whether a correlation or a conversion function between the two measures exists. Specifically, it has been suggested that the relationship between traditional Function Points and COSMIC Function Points may not be linear, i.e., the value of COSMIC Function Points seems to increase more than proportionally to an increase of traditional Function Points. This paper aims at verifying this hypothesis using available datasets that collect both FP and CFP size measures. Rigorous statistical analysis techniques are used, specifically Piecewise Linear Regression, whose applicability conditions are systematically checked. The Piecewise Linear Regression curve is a series of interconnected segments. In this paper, we focused on Piecewise Linear Regression curves composed of two segments. We also used Linear and Parabolic Regressions, to check if and to what extent Piecewise Linear Regression may provide an advantage over other regression techniques. We used two categories of regression techniques: Ordinary Least Squares regression is based on the usual minimization of the sum of squares of the residuals, or, equivalently, on the minimization of the average squared residual; Least Median of Squares regression is a robust regression technique that is based on the minimization of the median squared residual. Using a robust regression technique helps filter out the excessive influence of outliers. It appears that the analysis of the relationship between traditional Function Points and COSMIC Function Points based on the aforementioned data analysis techniques yields valid significant models. However, different results for the various available datasets are achieved. In practice, we obtained statistically valid linear, piecewise linear, and non-linear conversion formulas for several datasets. In general, none of these is better than the others in a statistically significant manner. Practitioners interested in the conversion of FP measures into CFP (or vice versa) cannot just pick a conversion model and be sure that it will yield the best results. All the regression models we tested provide good results with some datasets. In practice, all the models described in the paper – in particular, both linear and non-linear ones – should be evaluated in order to identify the ones that are best suited for the specific dataset at hand." @default.
- W2016110898 created "2016-06-24" @default.
- W2016110898 creator A5051028027 @default.
- W2016110898 creator A5068567905 @default.
- W2016110898 date "2011-08-01" @default.
- W2016110898 modified "2023-10-13" @default.
- W2016110898 title "Convertibility of Function Points into COSMIC Function Points: A study using Piecewise Linear Regression" @default.
- W2016110898 cites W1518879788 @default.
- W2016110898 cites W1981120975 @default.
- W2016110898 cites W2001255261 @default.
- W2016110898 cites W2024188017 @default.
- W2016110898 cites W2027070303 @default.
- W2016110898 cites W2032254535 @default.
- W2016110898 cites W2039148569 @default.
- W2016110898 cites W2093340516 @default.
- W2016110898 cites W2168745915 @default.
- W2016110898 doi "https://doi.org/10.1016/j.infsof.2011.02.005" @default.
- W2016110898 hasPublicationYear "2011" @default.
- W2016110898 type Work @default.
- W2016110898 sameAs 2016110898 @default.
- W2016110898 citedByCount "13" @default.
- W2016110898 countsByYear W20161108982012 @default.
- W2016110898 countsByYear W20161108982013 @default.
- W2016110898 countsByYear W20161108982014 @default.
- W2016110898 countsByYear W20161108982015 @default.
- W2016110898 countsByYear W20161108982016 @default.
- W2016110898 countsByYear W20161108982017 @default.
- W2016110898 countsByYear W20161108982018 @default.
- W2016110898 countsByYear W20161108982019 @default.
- W2016110898 crossrefType "journal-article" @default.
- W2016110898 hasAuthorship W2016110898A5051028027 @default.
- W2016110898 hasAuthorship W2016110898A5068567905 @default.
- W2016110898 hasConcept C105795698 @default.
- W2016110898 hasConcept C120068334 @default.
- W2016110898 hasConcept C134306372 @default.
- W2016110898 hasConcept C14036430 @default.
- W2016110898 hasConcept C152877465 @default.
- W2016110898 hasConcept C164660894 @default.
- W2016110898 hasConcept C17095337 @default.
- W2016110898 hasConcept C28826006 @default.
- W2016110898 hasConcept C32224588 @default.
- W2016110898 hasConcept C33923547 @default.
- W2016110898 hasConcept C35519122 @default.
- W2016110898 hasConcept C48921125 @default.
- W2016110898 hasConcept C78458016 @default.
- W2016110898 hasConcept C86803240 @default.
- W2016110898 hasConceptScore W2016110898C105795698 @default.
- W2016110898 hasConceptScore W2016110898C120068334 @default.
- W2016110898 hasConceptScore W2016110898C134306372 @default.
- W2016110898 hasConceptScore W2016110898C14036430 @default.
- W2016110898 hasConceptScore W2016110898C152877465 @default.
- W2016110898 hasConceptScore W2016110898C164660894 @default.
- W2016110898 hasConceptScore W2016110898C17095337 @default.
- W2016110898 hasConceptScore W2016110898C28826006 @default.
- W2016110898 hasConceptScore W2016110898C32224588 @default.
- W2016110898 hasConceptScore W2016110898C33923547 @default.
- W2016110898 hasConceptScore W2016110898C35519122 @default.
- W2016110898 hasConceptScore W2016110898C48921125 @default.
- W2016110898 hasConceptScore W2016110898C78458016 @default.
- W2016110898 hasConceptScore W2016110898C86803240 @default.
- W2016110898 hasIssue "8" @default.
- W2016110898 hasLocation W20161108981 @default.
- W2016110898 hasOpenAccess W2016110898 @default.
- W2016110898 hasPrimaryLocation W20161108981 @default.
- W2016110898 hasRelatedWork W1519288722 @default.
- W2016110898 hasRelatedWork W154688040 @default.
- W2016110898 hasRelatedWork W1564729776 @default.
- W2016110898 hasRelatedWork W1572494532 @default.
- W2016110898 hasRelatedWork W2918472618 @default.
- W2016110898 hasRelatedWork W2934484485 @default.
- W2016110898 hasRelatedWork W4212972958 @default.
- W2016110898 hasRelatedWork W4225727896 @default.
- W2016110898 hasRelatedWork W4309298396 @default.
- W2016110898 hasRelatedWork W2762171838 @default.
- W2016110898 hasVolume "53" @default.
- W2016110898 isParatext "false" @default.
- W2016110898 isRetracted "false" @default.
- W2016110898 magId "2016110898" @default.
- W2016110898 workType "article" @default.