Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016114744> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2016114744 endingPage "522" @default.
- W2016114744 startingPage "509" @default.
- W2016114744 abstract "In the present paper we prove three service theorems for the application of probability to number theory. They concern quantitative Fourier inversion (mod 1), and generalize in several ways a well-known result of Esseen. An application to a continuous analog of a problem of Erdös and Heilbronn is given." @default.
- W2016114744 created "2016-06-24" @default.
- W2016114744 creator A5061306969 @default.
- W2016114744 date "1972-12-01" @default.
- W2016114744 modified "2023-09-26" @default.
- W2016114744 title "On distribution functions (mod 1): Quantitative Fourier inversion" @default.
- W2016114744 cites W2008543002 @default.
- W2016114744 cites W842301775 @default.
- W2016114744 doi "https://doi.org/10.1016/0022-314x(72)90024-8" @default.
- W2016114744 hasPublicationYear "1972" @default.
- W2016114744 type Work @default.
- W2016114744 sameAs 2016114744 @default.
- W2016114744 citedByCount "5" @default.
- W2016114744 crossrefType "journal-article" @default.
- W2016114744 hasAuthorship W2016114744A5061306969 @default.
- W2016114744 hasBestOaLocation W20161147441 @default.
- W2016114744 hasConcept C102519508 @default.
- W2016114744 hasConcept C109007969 @default.
- W2016114744 hasConcept C110121322 @default.
- W2016114744 hasConcept C114614502 @default.
- W2016114744 hasConcept C127313418 @default.
- W2016114744 hasConcept C134306372 @default.
- W2016114744 hasConcept C151730666 @default.
- W2016114744 hasConcept C1893757 @default.
- W2016114744 hasConcept C202444582 @default.
- W2016114744 hasConcept C29231244 @default.
- W2016114744 hasConcept C33923547 @default.
- W2016114744 hasConceptScore W2016114744C102519508 @default.
- W2016114744 hasConceptScore W2016114744C109007969 @default.
- W2016114744 hasConceptScore W2016114744C110121322 @default.
- W2016114744 hasConceptScore W2016114744C114614502 @default.
- W2016114744 hasConceptScore W2016114744C127313418 @default.
- W2016114744 hasConceptScore W2016114744C134306372 @default.
- W2016114744 hasConceptScore W2016114744C151730666 @default.
- W2016114744 hasConceptScore W2016114744C1893757 @default.
- W2016114744 hasConceptScore W2016114744C202444582 @default.
- W2016114744 hasConceptScore W2016114744C29231244 @default.
- W2016114744 hasConceptScore W2016114744C33923547 @default.
- W2016114744 hasIssue "6" @default.
- W2016114744 hasLocation W20161147441 @default.
- W2016114744 hasOpenAccess W2016114744 @default.
- W2016114744 hasPrimaryLocation W20161147441 @default.
- W2016114744 hasRelatedWork W1985324828 @default.
- W2016114744 hasRelatedWork W1990386174 @default.
- W2016114744 hasRelatedWork W2009725566 @default.
- W2016114744 hasRelatedWork W2138239764 @default.
- W2016114744 hasRelatedWork W2317128564 @default.
- W2016114744 hasRelatedWork W2791901507 @default.
- W2016114744 hasRelatedWork W2792682067 @default.
- W2016114744 hasRelatedWork W2950601422 @default.
- W2016114744 hasRelatedWork W4233721905 @default.
- W2016114744 hasRelatedWork W4247832110 @default.
- W2016114744 hasVolume "4" @default.
- W2016114744 isParatext "false" @default.
- W2016114744 isRetracted "false" @default.
- W2016114744 magId "2016114744" @default.
- W2016114744 workType "article" @default.