Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016117509> ?p ?o ?g. }
- W2016117509 endingPage "e0123794" @default.
- W2016117509 startingPage "e0123794" @default.
- W2016117509 abstract "Strategies to minimize dengue transmission commonly rely on vector control, which aims to maintain Ae. aegypti density below a theoretical threshold. Mosquito abundance is traditionally estimated from mark-release-recapture (MRR) experiments, which lack proper analysis regarding accurate vector spatial distribution and population density. Recently proposed strategies to control vector-borne diseases involve replacing the susceptible wild population by genetically modified individuals’ refractory to the infection by the pathogen. Accurate measurements of mosquito abundance in time and space are required to optimize the success of such interventions. In this paper, we present a hierarchical probabilistic model for the estimation of population abundance and spatial distribution from typical mosquito MRR experiments, with direct application to the planning of these new control strategies. We perform a Bayesian analysis using the model and data from two MRR experiments performed in a neighborhood of Rio de Janeiro, Brazil, during both low- and high-dengue transmission seasons. The hierarchical model indicates that mosquito spatial distribution is clustered during the winter (0.99 mosquitoes/premise 95% CI: 0.80–1.23) and more homogeneous during the high abundance period (5.2 mosquitoes/premise 95% CI: 4.3–5.9). The hierarchical model also performed better than the commonly used Fisher-Ford’s method, when using simulated data. The proposed model provides a formal treatment of the sources of uncertainty associated with the estimation of mosquito abundance imposed by the sampling design. Our approach is useful in strategies such as population suppression or the displacement of wild vector populations by refractory Wolbachia-infected mosquitoes, since the invasion dynamics have been shown to follow threshold conditions dictated by mosquito abundance. The presence of spatially distributed abundance hotspots is also formally addressed under this modeling framework and its knowledge deemed crucial to predict the fate of transmission control strategies based on the replacement of vector populations." @default.
- W2016117509 created "2016-06-24" @default.
- W2016117509 creator A5001003199 @default.
- W2016117509 creator A5001956028 @default.
- W2016117509 creator A5034446177 @default.
- W2016117509 creator A5063001507 @default.
- W2016117509 creator A5074495767 @default.
- W2016117509 creator A5087906557 @default.
- W2016117509 date "2015-04-23" @default.
- W2016117509 modified "2023-10-16" @default.
- W2016117509 title "A Bayesian Hierarchical Model for Estimation of Abundance and Spatial Density of Aedes aegypti" @default.
- W2016117509 cites W1499898492 @default.
- W2016117509 cites W1598468168 @default.
- W2016117509 cites W1931091969 @default.
- W2016117509 cites W1967723434 @default.
- W2016117509 cites W1970104536 @default.
- W2016117509 cites W1971152354 @default.
- W2016117509 cites W1978933919 @default.
- W2016117509 cites W1988122199 @default.
- W2016117509 cites W2005690259 @default.
- W2016117509 cites W2022519924 @default.
- W2016117509 cites W2025183033 @default.
- W2016117509 cites W2033027572 @default.
- W2016117509 cites W2033186857 @default.
- W2016117509 cites W2034427376 @default.
- W2016117509 cites W2043839667 @default.
- W2016117509 cites W2045777361 @default.
- W2016117509 cites W2054892711 @default.
- W2016117509 cites W2066245205 @default.
- W2016117509 cites W2072086516 @default.
- W2016117509 cites W2073032880 @default.
- W2016117509 cites W2090763133 @default.
- W2016117509 cites W2097908672 @default.
- W2016117509 cites W2099261493 @default.
- W2016117509 cites W2100139577 @default.
- W2016117509 cites W2106951382 @default.
- W2016117509 cites W2107455680 @default.
- W2016117509 cites W2109663596 @default.
- W2016117509 cites W2112310960 @default.
- W2016117509 cites W2129402715 @default.
- W2016117509 cites W2136502970 @default.
- W2016117509 cites W2140837970 @default.
- W2016117509 cites W2150604056 @default.
- W2016117509 cites W2150704630 @default.
- W2016117509 cites W2156596225 @default.
- W2016117509 cites W2157275690 @default.
- W2016117509 cites W2168377438 @default.
- W2016117509 cites W2168985235 @default.
- W2016117509 cites W2169624508 @default.
- W2016117509 cites W2173103814 @default.
- W2016117509 cites W2174400081 @default.
- W2016117509 cites W2175985694 @default.
- W2016117509 cites W2178751304 @default.
- W2016117509 cites W2184684613 @default.
- W2016117509 cites W2322086496 @default.
- W2016117509 cites W4231844560 @default.
- W2016117509 doi "https://doi.org/10.1371/journal.pone.0123794" @default.
- W2016117509 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4408040" @default.
- W2016117509 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25906323" @default.
- W2016117509 hasPublicationYear "2015" @default.
- W2016117509 type Work @default.
- W2016117509 sameAs 2016117509 @default.
- W2016117509 citedByCount "33" @default.
- W2016117509 countsByYear W20161175092015 @default.
- W2016117509 countsByYear W20161175092016 @default.
- W2016117509 countsByYear W20161175092017 @default.
- W2016117509 countsByYear W20161175092018 @default.
- W2016117509 countsByYear W20161175092019 @default.
- W2016117509 countsByYear W20161175092021 @default.
- W2016117509 countsByYear W20161175092022 @default.
- W2016117509 countsByYear W20161175092023 @default.
- W2016117509 crossrefType "journal-article" @default.
- W2016117509 hasAuthorship W2016117509A5001003199 @default.
- W2016117509 hasAuthorship W2016117509A5001956028 @default.
- W2016117509 hasAuthorship W2016117509A5034446177 @default.
- W2016117509 hasAuthorship W2016117509A5063001507 @default.
- W2016117509 hasAuthorship W2016117509A5074495767 @default.
- W2016117509 hasAuthorship W2016117509A5087906557 @default.
- W2016117509 hasBestOaLocation W20161175091 @default.
- W2016117509 hasConcept C105795698 @default.
- W2016117509 hasConcept C159047783 @default.
- W2016117509 hasConcept C173758957 @default.
- W2016117509 hasConcept C18903297 @default.
- W2016117509 hasConcept C2777775583 @default.
- W2016117509 hasConcept C2908647359 @default.
- W2016117509 hasConcept C33923547 @default.
- W2016117509 hasConcept C533803919 @default.
- W2016117509 hasConcept C71924100 @default.
- W2016117509 hasConcept C77077793 @default.
- W2016117509 hasConcept C86803240 @default.
- W2016117509 hasConcept C99454951 @default.
- W2016117509 hasConceptScore W2016117509C105795698 @default.
- W2016117509 hasConceptScore W2016117509C159047783 @default.
- W2016117509 hasConceptScore W2016117509C173758957 @default.
- W2016117509 hasConceptScore W2016117509C18903297 @default.
- W2016117509 hasConceptScore W2016117509C2777775583 @default.
- W2016117509 hasConceptScore W2016117509C2908647359 @default.
- W2016117509 hasConceptScore W2016117509C33923547 @default.