Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016118699> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2016118699 endingPage "130" @default.
- W2016118699 startingPage "116" @default.
- W2016118699 abstract "The research reported in this paper has focused on the different modes of heat transfer – conductive (to the substrate), conductive and convective (to the environment) and radiative (to the environment) – from an on-chip resistance temperature detector (RTD). The study has been carried out at various input voltages, various pressures ranging from atmospheric to vacuum, and for two classes of platforms for the device – thermal insulators (glass wool and ceramic), and a thermal conductor (aluminum block). The transient temperature–time response of the RTD under the various conditions stated above was recorded. A heat transfer model approximately accounting for all the modes of heat transfer was introduced. The calibration parameters of the model allowed us to quantify the different modes of heat transfer. The model uncovers the fact that the heat losses to the environment via conduction and convection are almost as much as the heat lost by radiation (radiative effects were unequivocally confirmed experimentally). Compared to these losses, conductive heat losses from the RTD to its underlying substructure are far more dominant (almost five times). We also give an analysis originating from the exact form of conservation of energy and demonstrate that the use of the simplified model has led to the most dominant heat transfer mode of conduction to the substrate being underestimated by no more than 7.89% (at the highest input power tested)." @default.
- W2016118699 created "2016-06-24" @default.
- W2016118699 creator A5055307653 @default.
- W2016118699 creator A5057570987 @default.
- W2016118699 creator A5067099650 @default.
- W2016118699 date "2009-01-01" @default.
- W2016118699 modified "2023-10-16" @default.
- W2016118699 title "Experimental results and a user-friendly model of heat transfer from a thin film resistance temperature detector" @default.
- W2016118699 cites W1836770401 @default.
- W2016118699 cites W1994748728 @default.
- W2016118699 cites W2030774566 @default.
- W2016118699 cites W2031339977 @default.
- W2016118699 cites W2035466196 @default.
- W2016118699 cites W2037743305 @default.
- W2016118699 cites W2039805392 @default.
- W2016118699 cites W2044942529 @default.
- W2016118699 cites W2055637333 @default.
- W2016118699 cites W2062927930 @default.
- W2016118699 cites W2122429806 @default.
- W2016118699 cites W2131736324 @default.
- W2016118699 cites W2145271787 @default.
- W2016118699 cites W3104295964 @default.
- W2016118699 cites W44457218 @default.
- W2016118699 doi "https://doi.org/10.1016/j.applthermaleng.2008.02.009" @default.
- W2016118699 hasPublicationYear "2009" @default.
- W2016118699 type Work @default.
- W2016118699 sameAs 2016118699 @default.
- W2016118699 citedByCount "6" @default.
- W2016118699 countsByYear W20161186992012 @default.
- W2016118699 countsByYear W20161186992014 @default.
- W2016118699 countsByYear W20161186992019 @default.
- W2016118699 crossrefType "journal-article" @default.
- W2016118699 hasAuthorship W2016118699A5055307653 @default.
- W2016118699 hasAuthorship W2016118699A5057570987 @default.
- W2016118699 hasAuthorship W2016118699A5067099650 @default.
- W2016118699 hasConcept C10899652 @default.
- W2016118699 hasConcept C120665830 @default.
- W2016118699 hasConcept C121332964 @default.
- W2016118699 hasConcept C137693562 @default.
- W2016118699 hasConcept C159985019 @default.
- W2016118699 hasConcept C172100665 @default.
- W2016118699 hasConcept C192562407 @default.
- W2016118699 hasConcept C202374169 @default.
- W2016118699 hasConcept C29700514 @default.
- W2016118699 hasConcept C41231900 @default.
- W2016118699 hasConcept C50517652 @default.
- W2016118699 hasConcept C57879066 @default.
- W2016118699 hasConcept C74902906 @default.
- W2016118699 hasConcept C89394759 @default.
- W2016118699 hasConcept C97355855 @default.
- W2016118699 hasConceptScore W2016118699C10899652 @default.
- W2016118699 hasConceptScore W2016118699C120665830 @default.
- W2016118699 hasConceptScore W2016118699C121332964 @default.
- W2016118699 hasConceptScore W2016118699C137693562 @default.
- W2016118699 hasConceptScore W2016118699C159985019 @default.
- W2016118699 hasConceptScore W2016118699C172100665 @default.
- W2016118699 hasConceptScore W2016118699C192562407 @default.
- W2016118699 hasConceptScore W2016118699C202374169 @default.
- W2016118699 hasConceptScore W2016118699C29700514 @default.
- W2016118699 hasConceptScore W2016118699C41231900 @default.
- W2016118699 hasConceptScore W2016118699C50517652 @default.
- W2016118699 hasConceptScore W2016118699C57879066 @default.
- W2016118699 hasConceptScore W2016118699C74902906 @default.
- W2016118699 hasConceptScore W2016118699C89394759 @default.
- W2016118699 hasConceptScore W2016118699C97355855 @default.
- W2016118699 hasIssue "1" @default.
- W2016118699 hasLocation W20161186991 @default.
- W2016118699 hasOpenAccess W2016118699 @default.
- W2016118699 hasPrimaryLocation W20161186991 @default.
- W2016118699 hasRelatedWork W1005460174 @default.
- W2016118699 hasRelatedWork W191530845 @default.
- W2016118699 hasRelatedWork W2004160998 @default.
- W2016118699 hasRelatedWork W2041890219 @default.
- W2016118699 hasRelatedWork W2043474930 @default.
- W2016118699 hasRelatedWork W2056861664 @default.
- W2016118699 hasRelatedWork W210680934 @default.
- W2016118699 hasRelatedWork W297917126 @default.
- W2016118699 hasRelatedWork W3033150743 @default.
- W2016118699 hasRelatedWork W49853334 @default.
- W2016118699 hasVolume "29" @default.
- W2016118699 isParatext "false" @default.
- W2016118699 isRetracted "false" @default.
- W2016118699 magId "2016118699" @default.
- W2016118699 workType "article" @default.