Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016140945> ?p ?o ?g. }
- W2016140945 endingPage "1201" @default.
- W2016140945 startingPage "1188" @default.
- W2016140945 abstract "Energetic electrons and ions in the Van Allen radiation belt are the number one space weather threat. Understanding how these energetic particles are accelerated within the Van Allen radiation belt is one of the major challenges in space physics. This paper reviews the recent progress on the fast acceleration of “killer” electrons and energetic ions by ultralow frequency (ULF) waves stimulated by the interplanetary shock in the inner magnetosphere. Very low frequency (VLF) wave-particle interaction is considered to be one of the primary electron acceleration mechanisms because electron cyclotron resonances can easily occur in the VLF frequency range. Recently, using four Cluster spacecraft observations, we have found that, after interplanetary shocks impact the Earth’s magnetosphere, energetic electrons in the radiation belt are accelerated almost immediately and continue to accelerate for a few hours. The time scale (a few days) for traditional acceleration mechanisms, based on VLF wave-particle interactions to accelerate electrons to relativistic energies, is too long to explain our observations. Furthermore, we have found that interplanetary shocks or solar wind pressure pulses, with even small dynamic pressure changes, can play a non-negligible role in radiation belt dynamics. Interplanetary shocks interaction with the Earth’s magnetosphere manifests many fundamental space physics phenomena including energetic particle acceleration. The mechanism of fast acceleration of energetic electrons in the radiation belt responding to interplanetary shock impacts consists of three contributing parts: (1) the initial adiabatic acceleration due to strong shock-related magnetic field compression; (2) followed by the drift-resonant acceleration with poloidal ULF waves excited at different L-shells; and (3) particle acceleration due to the quickly damping electric fields associated with ULF waves. Particles end up with a net acceleration because they gain more energy in the first half of this cycle than they lose in the second. The results reported in this paper cast a new light on understanding the acceleration of energetic particles in the Earth’s Van Allen radiation belt. The results of this study can likewise be applied to interplanetary shock interaction with other planets such as Mercury, Jupiter, Saturn, Uranus and Neptune, and other astrophysical objects with magnetic fields." @default.
- W2016140945 created "2016-06-24" @default.
- W2016140945 creator A5003664945 @default.
- W2016140945 creator A5023162083 @default.
- W2016140945 creator A5038346796 @default.
- W2016140945 creator A5070126963 @default.
- W2016140945 creator A5075229841 @default.
- W2016140945 creator A5084750050 @default.
- W2016140945 date "2011-04-01" @default.
- W2016140945 modified "2023-10-18" @default.
- W2016140945 title "Fast acceleration of “killer” electrons and energetic ions by interplanetary shock stimulated ULF waves in the inner magnetosphere" @default.
- W2016140945 cites W1966416259 @default.
- W2016140945 cites W1968282221 @default.
- W2016140945 cites W1968944323 @default.
- W2016140945 cites W1971807940 @default.
- W2016140945 cites W1974644358 @default.
- W2016140945 cites W1979663589 @default.
- W2016140945 cites W1980645573 @default.
- W2016140945 cites W1982027899 @default.
- W2016140945 cites W1984627818 @default.
- W2016140945 cites W1985069156 @default.
- W2016140945 cites W1985780908 @default.
- W2016140945 cites W1986180792 @default.
- W2016140945 cites W1986321654 @default.
- W2016140945 cites W1987404095 @default.
- W2016140945 cites W1993000258 @default.
- W2016140945 cites W1998053836 @default.
- W2016140945 cites W2001660075 @default.
- W2016140945 cites W2004802777 @default.
- W2016140945 cites W2008041725 @default.
- W2016140945 cites W2014596069 @default.
- W2016140945 cites W2016800216 @default.
- W2016140945 cites W2017452295 @default.
- W2016140945 cites W2019545162 @default.
- W2016140945 cites W2020192861 @default.
- W2016140945 cites W2021767596 @default.
- W2016140945 cites W2023679358 @default.
- W2016140945 cites W2035040669 @default.
- W2016140945 cites W2038215344 @default.
- W2016140945 cites W2039131120 @default.
- W2016140945 cites W2039986982 @default.
- W2016140945 cites W2041473821 @default.
- W2016140945 cites W2044332553 @default.
- W2016140945 cites W2046377754 @default.
- W2016140945 cites W2047410059 @default.
- W2016140945 cites W2062690048 @default.
- W2016140945 cites W2063467765 @default.
- W2016140945 cites W2066740379 @default.
- W2016140945 cites W2067798094 @default.
- W2016140945 cites W2067904377 @default.
- W2016140945 cites W2069306611 @default.
- W2016140945 cites W2069782424 @default.
- W2016140945 cites W2070444152 @default.
- W2016140945 cites W2072106338 @default.
- W2016140945 cites W2073110496 @default.
- W2016140945 cites W2073135701 @default.
- W2016140945 cites W2077125919 @default.
- W2016140945 cites W2079708430 @default.
- W2016140945 cites W2080957796 @default.
- W2016140945 cites W2082476285 @default.
- W2016140945 cites W2082618218 @default.
- W2016140945 cites W2084917267 @default.
- W2016140945 cites W2086140045 @default.
- W2016140945 cites W2088810747 @default.
- W2016140945 cites W2098668960 @default.
- W2016140945 cites W2108586396 @default.
- W2016140945 cites W2127219224 @default.
- W2016140945 cites W2127780598 @default.
- W2016140945 cites W2131283943 @default.
- W2016140945 cites W2147207250 @default.
- W2016140945 cites W2148806888 @default.
- W2016140945 cites W2159859370 @default.
- W2016140945 cites W2323064125 @default.
- W2016140945 cites W3124786601 @default.
- W2016140945 doi "https://doi.org/10.1007/s11434-010-4308-8" @default.
- W2016140945 hasPublicationYear "2011" @default.
- W2016140945 type Work @default.
- W2016140945 sameAs 2016140945 @default.
- W2016140945 citedByCount "21" @default.
- W2016140945 countsByYear W20161409452012 @default.
- W2016140945 countsByYear W20161409452013 @default.
- W2016140945 countsByYear W20161409452015 @default.
- W2016140945 countsByYear W20161409452016 @default.
- W2016140945 countsByYear W20161409452017 @default.
- W2016140945 countsByYear W20161409452019 @default.
- W2016140945 countsByYear W20161409452020 @default.
- W2016140945 countsByYear W20161409452021 @default.
- W2016140945 countsByYear W20161409452022 @default.
- W2016140945 countsByYear W20161409452023 @default.
- W2016140945 crossrefType "journal-article" @default.
- W2016140945 hasAuthorship W2016140945A5003664945 @default.
- W2016140945 hasAuthorship W2016140945A5023162083 @default.
- W2016140945 hasAuthorship W2016140945A5038346796 @default.
- W2016140945 hasAuthorship W2016140945A5070126963 @default.
- W2016140945 hasAuthorship W2016140945A5075229841 @default.
- W2016140945 hasAuthorship W2016140945A5084750050 @default.
- W2016140945 hasBestOaLocation W20161409451 @default.
- W2016140945 hasConcept C108411613 @default.