Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016147597> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2016147597 abstract "Feature selection or dimensionality reduction is an important task for any pattern recognition, data mining or machine learning problem. For selection of the optimal subset of relevant features, two steps are needed. In the first step a measure is designed for the evaluation of a candidate feature subset and in the second step, search through the feature space is done for selecting the optimal one. Existing feature selection methodologies use combinations of various evaluation measures and search strategies for selecting optimal feature subset. Though a large number of effective methodologies are already developed, none of them is perfect. Research is still going on to find better algorithm with lesser computational cost. In this work a fuzzy consistency based evaluation measure has been proposed. Consequently a feature selection algorithm using the proposed fuzzy consistency measure with particle swarm optimization, an evolutionary computational technique widely used for optimization problems, is developed for selecting optimal feature subset. Simple simulation experiments with bench mark data sets have been done and the simulation results provide evidence that the proposed algorithm might be a good candidate for selecting optimal feature subset." @default.
- W2016147597 created "2016-06-24" @default.
- W2016147597 creator A5031457865 @default.
- W2016147597 creator A5031836646 @default.
- W2016147597 date "2013-10-01" @default.
- W2016147597 modified "2023-09-25" @default.
- W2016147597 title "Fuzzy Consistency Measure with Particle Swarm Optimization for Feature Selection" @default.
- W2016147597 cites W1963626514 @default.
- W2016147597 cites W1976990135 @default.
- W2016147597 cites W2001487452 @default.
- W2016147597 cites W2040103959 @default.
- W2016147597 cites W2061480162 @default.
- W2016147597 cites W2102230030 @default.
- W2016147597 cites W2152195021 @default.
- W2016147597 cites W2169038408 @default.
- W2016147597 cites W2543743110 @default.
- W2016147597 cites W4211007335 @default.
- W2016147597 doi "https://doi.org/10.1109/smc.2013.735" @default.
- W2016147597 hasPublicationYear "2013" @default.
- W2016147597 type Work @default.
- W2016147597 sameAs 2016147597 @default.
- W2016147597 citedByCount "7" @default.
- W2016147597 countsByYear W20161475972014 @default.
- W2016147597 countsByYear W20161475972016 @default.
- W2016147597 countsByYear W20161475972019 @default.
- W2016147597 crossrefType "proceedings-article" @default.
- W2016147597 hasAuthorship W2016147597A5031457865 @default.
- W2016147597 hasAuthorship W2016147597A5031836646 @default.
- W2016147597 hasConcept C119857082 @default.
- W2016147597 hasConcept C122357587 @default.
- W2016147597 hasConcept C124101348 @default.
- W2016147597 hasConcept C126255220 @default.
- W2016147597 hasConcept C138885662 @default.
- W2016147597 hasConcept C148483581 @default.
- W2016147597 hasConcept C153180895 @default.
- W2016147597 hasConcept C154945302 @default.
- W2016147597 hasConcept C2776401178 @default.
- W2016147597 hasConcept C2776436953 @default.
- W2016147597 hasConcept C2780009758 @default.
- W2016147597 hasConcept C33923547 @default.
- W2016147597 hasConcept C41008148 @default.
- W2016147597 hasConcept C41895202 @default.
- W2016147597 hasConcept C42011625 @default.
- W2016147597 hasConcept C58166 @default.
- W2016147597 hasConcept C81917197 @default.
- W2016147597 hasConcept C85617194 @default.
- W2016147597 hasConceptScore W2016147597C119857082 @default.
- W2016147597 hasConceptScore W2016147597C122357587 @default.
- W2016147597 hasConceptScore W2016147597C124101348 @default.
- W2016147597 hasConceptScore W2016147597C126255220 @default.
- W2016147597 hasConceptScore W2016147597C138885662 @default.
- W2016147597 hasConceptScore W2016147597C148483581 @default.
- W2016147597 hasConceptScore W2016147597C153180895 @default.
- W2016147597 hasConceptScore W2016147597C154945302 @default.
- W2016147597 hasConceptScore W2016147597C2776401178 @default.
- W2016147597 hasConceptScore W2016147597C2776436953 @default.
- W2016147597 hasConceptScore W2016147597C2780009758 @default.
- W2016147597 hasConceptScore W2016147597C33923547 @default.
- W2016147597 hasConceptScore W2016147597C41008148 @default.
- W2016147597 hasConceptScore W2016147597C41895202 @default.
- W2016147597 hasConceptScore W2016147597C42011625 @default.
- W2016147597 hasConceptScore W2016147597C58166 @default.
- W2016147597 hasConceptScore W2016147597C81917197 @default.
- W2016147597 hasConceptScore W2016147597C85617194 @default.
- W2016147597 hasLocation W20161475971 @default.
- W2016147597 hasOpenAccess W2016147597 @default.
- W2016147597 hasPrimaryLocation W20161475971 @default.
- W2016147597 hasRelatedWork W1747965218 @default.
- W2016147597 hasRelatedWork W2061500280 @default.
- W2016147597 hasRelatedWork W2076254365 @default.
- W2016147597 hasRelatedWork W2084289551 @default.
- W2016147597 hasRelatedWork W2367645460 @default.
- W2016147597 hasRelatedWork W2372447950 @default.
- W2016147597 hasRelatedWork W2378555599 @default.
- W2016147597 hasRelatedWork W2917334140 @default.
- W2016147597 hasRelatedWork W3002669349 @default.
- W2016147597 hasRelatedWork W3177438917 @default.
- W2016147597 isParatext "false" @default.
- W2016147597 isRetracted "false" @default.
- W2016147597 magId "2016147597" @default.
- W2016147597 workType "article" @default.