Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016173524> ?p ?o ?g. }
- W2016173524 endingPage "179" @default.
- W2016173524 startingPage "165" @default.
- W2016173524 abstract "The ability to estimate and monitor standing dead trees (snags) has been difficult due to their irregular and sparse distribution, often requiring intensive sampling methods to obtain statistically significant estimates. This study presents a new method for estimating and monitoring snags using neighborhood attribute filtered airborne discrete-return lidar data. The method first develops and then applies an automated filtering algorithm that utilizes three dimensional neighborhood lidar point-based intensity and density statistics to remove lidar points associated with live trees and retain lidar points associated with snags. A traditional airborne lidar individual-tree detection procedure is then applied to the snag-filtered lidar point cloud, resulting in stem map of identified snags with height estimates. The filtering algorithm was developed using training datasets comprised of four different forest types in wide range of stand conditions, and then applied to independent data to determine successful snag detection rates. Detection rates ranged from 43 to 100%, increasing as the size of snags increased. The overall detection rate for snags with DBH ≥ 25 cm was 56% (± 2.9%) with low commission error rates. The method provides the ability to estimate snag density and stem map a large proportion of snags across the landscape. The resulting information can be used to analyze the spatial distribution of snags, provide a better understanding of wildlife snag use dynamics, assess achievement of stocking standard requirements, and bring more clarity to snag stocking standards." @default.
- W2016173524 created "2016-06-24" @default.
- W2016173524 creator A5004002140 @default.
- W2016173524 creator A5017560144 @default.
- W2016173524 creator A5028550721 @default.
- W2016173524 creator A5039810614 @default.
- W2016173524 creator A5063686564 @default.
- W2016173524 date "2015-06-01" @default.
- W2016173524 modified "2023-10-14" @default.
- W2016173524 title "Individual snag detection using neighborhood attribute filtered airborne lidar data" @default.
- W2016173524 cites W1580218488 @default.
- W2016173524 cites W1965228281 @default.
- W2016173524 cites W1976984287 @default.
- W2016173524 cites W1979347831 @default.
- W2016173524 cites W1996022982 @default.
- W2016173524 cites W1996263757 @default.
- W2016173524 cites W1996938046 @default.
- W2016173524 cites W2004156726 @default.
- W2016173524 cites W2010062112 @default.
- W2016173524 cites W2021783541 @default.
- W2016173524 cites W2033262909 @default.
- W2016173524 cites W2042832944 @default.
- W2016173524 cites W2042891401 @default.
- W2016173524 cites W2043882929 @default.
- W2016173524 cites W2050359437 @default.
- W2016173524 cites W2056466863 @default.
- W2016173524 cites W2065401301 @default.
- W2016173524 cites W2070608504 @default.
- W2016173524 cites W2072938876 @default.
- W2016173524 cites W2080157231 @default.
- W2016173524 cites W2082012651 @default.
- W2016173524 cites W2088290579 @default.
- W2016173524 cites W2088520746 @default.
- W2016173524 cites W2088763983 @default.
- W2016173524 cites W2091243679 @default.
- W2016173524 cites W2098012392 @default.
- W2016173524 cites W2101059365 @default.
- W2016173524 cites W2106004874 @default.
- W2016173524 cites W2106619877 @default.
- W2016173524 cites W2108064960 @default.
- W2016173524 cites W2109291191 @default.
- W2016173524 cites W2145497555 @default.
- W2016173524 cites W2150489395 @default.
- W2016173524 cites W2152515840 @default.
- W2016173524 cites W2170131456 @default.
- W2016173524 cites W2171992127 @default.
- W2016173524 cites W2273297058 @default.
- W2016173524 doi "https://doi.org/10.1016/j.rse.2015.03.013" @default.
- W2016173524 hasPublicationYear "2015" @default.
- W2016173524 type Work @default.
- W2016173524 sameAs 2016173524 @default.
- W2016173524 citedByCount "52" @default.
- W2016173524 countsByYear W20161735242015 @default.
- W2016173524 countsByYear W20161735242016 @default.
- W2016173524 countsByYear W20161735242017 @default.
- W2016173524 countsByYear W20161735242018 @default.
- W2016173524 countsByYear W20161735242019 @default.
- W2016173524 countsByYear W20161735242020 @default.
- W2016173524 countsByYear W20161735242021 @default.
- W2016173524 countsByYear W20161735242022 @default.
- W2016173524 countsByYear W20161735242023 @default.
- W2016173524 crossrefType "journal-article" @default.
- W2016173524 hasAuthorship W2016173524A5004002140 @default.
- W2016173524 hasAuthorship W2016173524A5017560144 @default.
- W2016173524 hasAuthorship W2016173524A5028550721 @default.
- W2016173524 hasAuthorship W2016173524A5039810614 @default.
- W2016173524 hasAuthorship W2016173524A5063686564 @default.
- W2016173524 hasConcept C131979681 @default.
- W2016173524 hasConcept C154945302 @default.
- W2016173524 hasConcept C185933670 @default.
- W2016173524 hasConcept C18903297 @default.
- W2016173524 hasConcept C192158950 @default.
- W2016173524 hasConcept C205649164 @default.
- W2016173524 hasConcept C2991976725 @default.
- W2016173524 hasConcept C39432304 @default.
- W2016173524 hasConcept C41008148 @default.
- W2016173524 hasConcept C51399673 @default.
- W2016173524 hasConcept C62649853 @default.
- W2016173524 hasConcept C86803240 @default.
- W2016173524 hasConcept C97137747 @default.
- W2016173524 hasConceptScore W2016173524C131979681 @default.
- W2016173524 hasConceptScore W2016173524C154945302 @default.
- W2016173524 hasConceptScore W2016173524C185933670 @default.
- W2016173524 hasConceptScore W2016173524C18903297 @default.
- W2016173524 hasConceptScore W2016173524C192158950 @default.
- W2016173524 hasConceptScore W2016173524C205649164 @default.
- W2016173524 hasConceptScore W2016173524C2991976725 @default.
- W2016173524 hasConceptScore W2016173524C39432304 @default.
- W2016173524 hasConceptScore W2016173524C41008148 @default.
- W2016173524 hasConceptScore W2016173524C51399673 @default.
- W2016173524 hasConceptScore W2016173524C62649853 @default.
- W2016173524 hasConceptScore W2016173524C86803240 @default.
- W2016173524 hasConceptScore W2016173524C97137747 @default.
- W2016173524 hasLocation W20161735241 @default.
- W2016173524 hasOpenAccess W2016173524 @default.
- W2016173524 hasPrimaryLocation W20161735241 @default.
- W2016173524 hasRelatedWork W2194160504 @default.
- W2016173524 hasRelatedWork W2335177719 @default.