Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016176323> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2016176323 abstract "The traffic matrix (TM) is essential in network planning and traffic engineering tasks. Lots of models and methods are proposed to estimate the network overall traffic matrix from link measurements. However because of the limits of the link measurements, the estimation on overall traffic matrix from link measurements based on these prior model assumptions do not perform well for large-scale networks. It has been proved the probability model can reconstruct the traffic matrix from limited link measurements with small bias. The probability model-based estimation is also extended to large-scale networks. We compare the probability model with the classical gravity model using real data of the Abilene network. It demonstrates the probability model is applicable in real networks. Finally we propose a model that combines the probability model and the gravity model. It is proved the performance of TM estimation based on this model is better than that based on two sole models separately." @default.
- W2016176323 created "2016-06-24" @default.
- W2016176323 creator A5019529197 @default.
- W2016176323 creator A5039908048 @default.
- W2016176323 date "2014-07-01" @default.
- W2016176323 modified "2023-09-27" @default.
- W2016176323 title "Study on a New Model for Network Traffic Matrix Estimation" @default.
- W2016176323 cites W1518315762 @default.
- W2016176323 cites W1970701242 @default.
- W2016176323 doi "https://doi.org/10.1109/paap.2014.63" @default.
- W2016176323 hasPublicationYear "2014" @default.
- W2016176323 type Work @default.
- W2016176323 sameAs 2016176323 @default.
- W2016176323 citedByCount "5" @default.
- W2016176323 countsByYear W20161763232016 @default.
- W2016176323 countsByYear W20161763232017 @default.
- W2016176323 countsByYear W20161763232020 @default.
- W2016176323 countsByYear W20161763232021 @default.
- W2016176323 crossrefType "proceedings-article" @default.
- W2016176323 hasAuthorship W2016176323A5019529197 @default.
- W2016176323 hasAuthorship W2016176323A5039908048 @default.
- W2016176323 hasConcept C104122410 @default.
- W2016176323 hasConcept C105795698 @default.
- W2016176323 hasConcept C106487976 @default.
- W2016176323 hasConcept C11413529 @default.
- W2016176323 hasConcept C124101348 @default.
- W2016176323 hasConcept C159985019 @default.
- W2016176323 hasConcept C176715033 @default.
- W2016176323 hasConcept C192562407 @default.
- W2016176323 hasConcept C2778753846 @default.
- W2016176323 hasConcept C2984179964 @default.
- W2016176323 hasConcept C31258907 @default.
- W2016176323 hasConcept C33923547 @default.
- W2016176323 hasConcept C41008148 @default.
- W2016176323 hasConcept C67186912 @default.
- W2016176323 hasConcept C77088390 @default.
- W2016176323 hasConcept C79403827 @default.
- W2016176323 hasConceptScore W2016176323C104122410 @default.
- W2016176323 hasConceptScore W2016176323C105795698 @default.
- W2016176323 hasConceptScore W2016176323C106487976 @default.
- W2016176323 hasConceptScore W2016176323C11413529 @default.
- W2016176323 hasConceptScore W2016176323C124101348 @default.
- W2016176323 hasConceptScore W2016176323C159985019 @default.
- W2016176323 hasConceptScore W2016176323C176715033 @default.
- W2016176323 hasConceptScore W2016176323C192562407 @default.
- W2016176323 hasConceptScore W2016176323C2778753846 @default.
- W2016176323 hasConceptScore W2016176323C2984179964 @default.
- W2016176323 hasConceptScore W2016176323C31258907 @default.
- W2016176323 hasConceptScore W2016176323C33923547 @default.
- W2016176323 hasConceptScore W2016176323C41008148 @default.
- W2016176323 hasConceptScore W2016176323C67186912 @default.
- W2016176323 hasConceptScore W2016176323C77088390 @default.
- W2016176323 hasConceptScore W2016176323C79403827 @default.
- W2016176323 hasLocation W20161763231 @default.
- W2016176323 hasOpenAccess W2016176323 @default.
- W2016176323 hasPrimaryLocation W20161763231 @default.
- W2016176323 hasRelatedWork W1964612603 @default.
- W2016176323 hasRelatedWork W2004237889 @default.
- W2016176323 hasRelatedWork W2012266395 @default.
- W2016176323 hasRelatedWork W2025006948 @default.
- W2016176323 hasRelatedWork W2074462449 @default.
- W2016176323 hasRelatedWork W2100613730 @default.
- W2016176323 hasRelatedWork W2118503791 @default.
- W2016176323 hasRelatedWork W2161705504 @default.
- W2016176323 hasRelatedWork W2373760491 @default.
- W2016176323 hasRelatedWork W3013044429 @default.
- W2016176323 isParatext "false" @default.
- W2016176323 isRetracted "false" @default.
- W2016176323 magId "2016176323" @default.
- W2016176323 workType "article" @default.