Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016177623> ?p ?o ?g. }
- W2016177623 endingPage "196" @default.
- W2016177623 startingPage "49" @default.
- W2016177623 abstract "We present recent developments of stochastic descriptions of nuclear dynamics. We focus on the newly introduced microscopic descriptions, such as stochastic extensions of currently used kinetic equations, as well as on more phenomenological, macroscopic approaches. We show to what extent these stochastic descriptions may offer a proper picture of nuclear dynamics both in strongly out of equilibrium situations, such as the ones encountered in energetic heavy-ion collisions or in closer to equilibrium situations such as the deexcitation of hot nuclei by thermal fission. In Section 1 we present a pedestrian introduction to the stochastic description of dynamical systems. We start from the elementary Brownian motion and introduce the Langevin and Fokker-Planck descriptions of the motion on that occasion. A few words are then spent to discuss the numerical methods developed for simulating stochastic equations. Section 2 of the paper is devoted to a formal introduction and discussion of both macroscopic and microscopic stochastic descriptions of nuclear dynamics. After a brief introduction reminding general concepts of equilibrium statistical physics we focus on microscopic descriptions of the many-body problem. We introduce here the Boltzmann Langevin equation which will provide a basis for many subsequent discussions. After having discussed the obtention of this equation from various points of view (from density matrix and Green's function techniques in particular), we consider reduced versions of this equation as well as a Fokker-Planck alternative. Section 3 is devoted to an analysis of fission by means of Langevin or Fokker-Planck-like approaches. We mainly discuss phenomenological approaches and spend some time in a detailed presentation of the ingredients entering these models. We present results obtained in these dynamical calculations when a proper account of particle evaporation is included for describing the fission of hot nuclei. Critical comparisons with experimental data are also provided. In Section 4 we focus on the application of the Boltzmann Langevin Equation to various situations encountered in energetic nuclear collisions. We first remind some typical examples for which this stochastic approach is both necessary and well suited. Typical applications are nuclear multifragmentation and subthreshold particle production, such as in particular kaon production. We discuss possible simulations of this equation and present some results in realistic calculations of collisions. We particularly focus on the dynamics of collective variables such as the quadrupole moment of the momentum distribution. We finally discuss other numerical simulations developed in the field. The last section before conclusion is devoted to extensions presently developed in the field of microscopic stochastic descriptions of nuclear dynamics. We present as a first step a relativistic version of the theory, then focus on fluid dynamics reductions. We finally discuss in some detail the recently introduced Stochastic time-dependent Hartree-Fock theory, which could provide new interesting developments." @default.
- W2016177623 created "2016-06-24" @default.
- W2016177623 creator A5021841639 @default.
- W2016177623 creator A5044895323 @default.
- W2016177623 creator A5047115956 @default.
- W2016177623 creator A5072498726 @default.
- W2016177623 date "1996-10-01" @default.
- W2016177623 modified "2023-10-01" @default.
- W2016177623 title "On stochastic approaches of nuclear dynamics" @default.
- W2016177623 cites W148852613 @default.
- W2016177623 cites W1493762487 @default.
- W2016177623 cites W153451775 @default.
- W2016177623 cites W1558183314 @default.
- W2016177623 cites W1598177272 @default.
- W2016177623 cites W1649553762 @default.
- W2016177623 cites W1964097607 @default.
- W2016177623 cites W1965147089 @default.
- W2016177623 cites W1966619742 @default.
- W2016177623 cites W1966941009 @default.
- W2016177623 cites W1968059978 @default.
- W2016177623 cites W1968918835 @default.
- W2016177623 cites W1972098146 @default.
- W2016177623 cites W1972279181 @default.
- W2016177623 cites W1972324897 @default.
- W2016177623 cites W1974103255 @default.
- W2016177623 cites W1974421643 @default.
- W2016177623 cites W1975565257 @default.
- W2016177623 cites W1976440050 @default.
- W2016177623 cites W1978478148 @default.
- W2016177623 cites W1979076588 @default.
- W2016177623 cites W1979386986 @default.
- W2016177623 cites W1982139632 @default.
- W2016177623 cites W1983393198 @default.
- W2016177623 cites W1983598244 @default.
- W2016177623 cites W1983895837 @default.
- W2016177623 cites W1984232154 @default.
- W2016177623 cites W1984859954 @default.
- W2016177623 cites W1986984010 @default.
- W2016177623 cites W1987881172 @default.
- W2016177623 cites W1987907705 @default.
- W2016177623 cites W1988106606 @default.
- W2016177623 cites W1988243200 @default.
- W2016177623 cites W1994487640 @default.
- W2016177623 cites W1994616521 @default.
- W2016177623 cites W1995190731 @default.
- W2016177623 cites W1995610633 @default.
- W2016177623 cites W1996640146 @default.
- W2016177623 cites W1997020598 @default.
- W2016177623 cites W1997300181 @default.
- W2016177623 cites W1998073454 @default.
- W2016177623 cites W1998252433 @default.
- W2016177623 cites W1998467898 @default.
- W2016177623 cites W1998469348 @default.
- W2016177623 cites W1998520721 @default.
- W2016177623 cites W1998909208 @default.
- W2016177623 cites W1999195621 @default.
- W2016177623 cites W1999666099 @default.
- W2016177623 cites W2000160478 @default.
- W2016177623 cites W2001069305 @default.
- W2016177623 cites W2002721565 @default.
- W2016177623 cites W2005437306 @default.
- W2016177623 cites W2005451391 @default.
- W2016177623 cites W2009041809 @default.
- W2016177623 cites W2009447971 @default.
- W2016177623 cites W2011911734 @default.
- W2016177623 cites W2013013618 @default.
- W2016177623 cites W2015019026 @default.
- W2016177623 cites W2015584886 @default.
- W2016177623 cites W2016975306 @default.
- W2016177623 cites W2017024248 @default.
- W2016177623 cites W2017945471 @default.
- W2016177623 cites W2018049572 @default.
- W2016177623 cites W2018660741 @default.
- W2016177623 cites W2018973886 @default.
- W2016177623 cites W2019887029 @default.
- W2016177623 cites W2020889186 @default.
- W2016177623 cites W2020941384 @default.
- W2016177623 cites W2021198715 @default.
- W2016177623 cites W2021763222 @default.
- W2016177623 cites W2022537947 @default.
- W2016177623 cites W2022663726 @default.
- W2016177623 cites W2022712050 @default.
- W2016177623 cites W2024147526 @default.
- W2016177623 cites W2025918469 @default.
- W2016177623 cites W2033755632 @default.
- W2016177623 cites W2034521446 @default.
- W2016177623 cites W2034877379 @default.
- W2016177623 cites W2035350487 @default.
- W2016177623 cites W2035705611 @default.
- W2016177623 cites W2036471108 @default.
- W2016177623 cites W2036890054 @default.
- W2016177623 cites W2037381199 @default.
- W2016177623 cites W2038329873 @default.
- W2016177623 cites W2038793185 @default.
- W2016177623 cites W2039070775 @default.
- W2016177623 cites W2039893929 @default.
- W2016177623 cites W2040730178 @default.
- W2016177623 cites W2041100616 @default.