Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016178520> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2016178520 abstract "Data sparseness is an ever dominating problem in automatic emotion recognition. Using artificially generated speech for training or adapting models could potentially ease this: though less natural than human speech, one could synthesize the exact spoken content in different emotional nuances - of many speakers and even in different languages. To investigate chances, the phonemisation components Txt2Pho and openMary are used with Emofilt and Mbrola for emotional speech synthesis. Analysis is realized with our Munich open Emotion and Affect Recognition toolkit. As test set we gently limit to the acted Berlin and eNTERFACE databases for the moment. In the result synthesized speech can indeed be used for the recognition of human emotional speech." @default.
- W2016178520 created "2016-06-24" @default.
- W2016178520 creator A5019602951 @default.
- W2016178520 creator A5019651318 @default.
- W2016178520 date "2010-03-01" @default.
- W2016178520 modified "2023-09-25" @default.
- W2016178520 title "Learning with synthesized speech for automatic emotion recognition" @default.
- W2016178520 cites W1501669607 @default.
- W2016178520 cites W1523135049 @default.
- W2016178520 cites W2130890537 @default.
- W2016178520 cites W2156503193 @default.
- W2016178520 cites W2162402387 @default.
- W2016178520 cites W2167854178 @default.
- W2016178520 cites W83076953 @default.
- W2016178520 doi "https://doi.org/10.1109/icassp.2010.5495017" @default.
- W2016178520 hasPublicationYear "2010" @default.
- W2016178520 type Work @default.
- W2016178520 sameAs 2016178520 @default.
- W2016178520 citedByCount "20" @default.
- W2016178520 countsByYear W20161785202012 @default.
- W2016178520 countsByYear W20161785202013 @default.
- W2016178520 countsByYear W20161785202014 @default.
- W2016178520 countsByYear W20161785202015 @default.
- W2016178520 countsByYear W20161785202016 @default.
- W2016178520 countsByYear W20161785202017 @default.
- W2016178520 countsByYear W20161785202018 @default.
- W2016178520 countsByYear W20161785202019 @default.
- W2016178520 countsByYear W20161785202020 @default.
- W2016178520 countsByYear W20161785202021 @default.
- W2016178520 countsByYear W20161785202022 @default.
- W2016178520 crossrefType "proceedings-article" @default.
- W2016178520 hasAuthorship W2016178520A5019602951 @default.
- W2016178520 hasAuthorship W2016178520A5019651318 @default.
- W2016178520 hasBestOaLocation W20161785202 @default.
- W2016178520 hasConcept C134306372 @default.
- W2016178520 hasConcept C14999030 @default.
- W2016178520 hasConcept C151201525 @default.
- W2016178520 hasConcept C154945302 @default.
- W2016178520 hasConcept C15744967 @default.
- W2016178520 hasConcept C166957645 @default.
- W2016178520 hasConcept C177264268 @default.
- W2016178520 hasConcept C199360897 @default.
- W2016178520 hasConcept C204201278 @default.
- W2016178520 hasConcept C204321447 @default.
- W2016178520 hasConcept C2776035688 @default.
- W2016178520 hasConcept C2776608160 @default.
- W2016178520 hasConcept C2777438025 @default.
- W2016178520 hasConcept C28490314 @default.
- W2016178520 hasConcept C2988148770 @default.
- W2016178520 hasConcept C33923547 @default.
- W2016178520 hasConcept C41008148 @default.
- W2016178520 hasConcept C46312422 @default.
- W2016178520 hasConcept C51632099 @default.
- W2016178520 hasConcept C61328038 @default.
- W2016178520 hasConcept C91863865 @default.
- W2016178520 hasConcept C95457728 @default.
- W2016178520 hasConceptScore W2016178520C134306372 @default.
- W2016178520 hasConceptScore W2016178520C14999030 @default.
- W2016178520 hasConceptScore W2016178520C151201525 @default.
- W2016178520 hasConceptScore W2016178520C154945302 @default.
- W2016178520 hasConceptScore W2016178520C15744967 @default.
- W2016178520 hasConceptScore W2016178520C166957645 @default.
- W2016178520 hasConceptScore W2016178520C177264268 @default.
- W2016178520 hasConceptScore W2016178520C199360897 @default.
- W2016178520 hasConceptScore W2016178520C204201278 @default.
- W2016178520 hasConceptScore W2016178520C204321447 @default.
- W2016178520 hasConceptScore W2016178520C2776035688 @default.
- W2016178520 hasConceptScore W2016178520C2776608160 @default.
- W2016178520 hasConceptScore W2016178520C2777438025 @default.
- W2016178520 hasConceptScore W2016178520C28490314 @default.
- W2016178520 hasConceptScore W2016178520C2988148770 @default.
- W2016178520 hasConceptScore W2016178520C33923547 @default.
- W2016178520 hasConceptScore W2016178520C41008148 @default.
- W2016178520 hasConceptScore W2016178520C46312422 @default.
- W2016178520 hasConceptScore W2016178520C51632099 @default.
- W2016178520 hasConceptScore W2016178520C61328038 @default.
- W2016178520 hasConceptScore W2016178520C91863865 @default.
- W2016178520 hasConceptScore W2016178520C95457728 @default.
- W2016178520 hasLocation W20161785201 @default.
- W2016178520 hasLocation W20161785202 @default.
- W2016178520 hasLocation W20161785203 @default.
- W2016178520 hasLocation W20161785204 @default.
- W2016178520 hasOpenAccess W2016178520 @default.
- W2016178520 hasPrimaryLocation W20161785201 @default.
- W2016178520 hasRelatedWork W1987021544 @default.
- W2016178520 hasRelatedWork W2012919372 @default.
- W2016178520 hasRelatedWork W2016178520 @default.
- W2016178520 hasRelatedWork W2022789108 @default.
- W2016178520 hasRelatedWork W2153664791 @default.
- W2016178520 hasRelatedWork W2166366223 @default.
- W2016178520 hasRelatedWork W2185430718 @default.
- W2016178520 hasRelatedWork W2537969829 @default.
- W2016178520 hasRelatedWork W2567495185 @default.
- W2016178520 hasRelatedWork W2971563979 @default.
- W2016178520 isParatext "false" @default.
- W2016178520 isRetracted "false" @default.
- W2016178520 magId "2016178520" @default.
- W2016178520 workType "article" @default.