Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016185242> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2016185242 endingPage "40" @default.
- W2016185242 startingPage "1" @default.
- W2016185242 abstract "We consider the analogues of the Horn inequalities in finite von Neumann algebras, which concern the possible spectral distributions of sums $a+b$ of self--adjoint elements $a$ and $b$ in a finite von Neumann algebra. It is an open question whether all of these Horn inequalities must hold in all finite von Neumann algebras, and this is related to Connes' embedding problem. For each choice of integers $1le rle n$, there is a set $T^n_r$ of Horn triples, and the Horn inequalities are in one-to-one correspondence with $cup_{1le rle n}T^n_r$. We consider a property P$_n$, analogous to one introduced by Therianos and Thompson in the case of matrices, amounting to the existence of projections having certain properties relative to arbitrary flags, which guarantees that a given Horn inequality holds in all finite von Neumann algebras. It is an open question whether all Horn triples in $T^n_r$ have property P$_n$. Certain triples in $T^n_r$ can be reduced to triples in $T^{n-1}_r$ by an operation we call {em TT--reduction}. We show that property P$_n$ holds for the original triple if property P$_{n-1}$ holds for the reduced one. We then characterize the TT--irreducible Horn triples in $T^n_3$, for arbitrary $n$, and for those LR--minimal ones (namely, those having Littlewood--Richardson coefficient equal to 1), we perform a construction of projections with respect to flags in arbitrary von Neumann algebras in order to prove property P$_n$ for them. This shows that all LR--minimal triples in $cup_{nge3}T^n_3$ have property P$_n$, and so that the corresponding Horn inequalities hold in all finite von Neumann algebras." @default.
- W2016185242 created "2016-06-24" @default.
- W2016185242 creator A5030146419 @default.
- W2016185242 creator A5038591719 @default.
- W2016185242 date "2009-01-01" @default.
- W2016185242 modified "2023-10-18" @default.
- W2016185242 title "On a reduction procedure for Horn inequalities in finite von Neumann algebras" @default.
- W2016185242 cites W1557184188 @default.
- W2016185242 cites W1973886891 @default.
- W2016185242 cites W2019669853 @default.
- W2016185242 cites W2071453418 @default.
- W2016185242 cites W2963383064 @default.
- W2016185242 doi "https://doi.org/10.7153/oam-03-01" @default.
- W2016185242 hasPublicationYear "2009" @default.
- W2016185242 type Work @default.
- W2016185242 sameAs 2016185242 @default.
- W2016185242 citedByCount "5" @default.
- W2016185242 countsByYear W20161852422014 @default.
- W2016185242 countsByYear W20161852422015 @default.
- W2016185242 crossrefType "journal-article" @default.
- W2016185242 hasAuthorship W2016185242A5030146419 @default.
- W2016185242 hasAuthorship W2016185242A5038591719 @default.
- W2016185242 hasBestOaLocation W20161852421 @default.
- W2016185242 hasConcept C111335779 @default.
- W2016185242 hasConcept C114614502 @default.
- W2016185242 hasConcept C118615104 @default.
- W2016185242 hasConcept C152076505 @default.
- W2016185242 hasConcept C153408630 @default.
- W2016185242 hasConcept C154945302 @default.
- W2016185242 hasConcept C15744967 @default.
- W2016185242 hasConcept C19417346 @default.
- W2016185242 hasConcept C202444582 @default.
- W2016185242 hasConcept C2524010 @default.
- W2016185242 hasConcept C33923547 @default.
- W2016185242 hasConcept C41008148 @default.
- W2016185242 hasConcept C41608201 @default.
- W2016185242 hasConcept C80469333 @default.
- W2016185242 hasConceptScore W2016185242C111335779 @default.
- W2016185242 hasConceptScore W2016185242C114614502 @default.
- W2016185242 hasConceptScore W2016185242C118615104 @default.
- W2016185242 hasConceptScore W2016185242C152076505 @default.
- W2016185242 hasConceptScore W2016185242C153408630 @default.
- W2016185242 hasConceptScore W2016185242C154945302 @default.
- W2016185242 hasConceptScore W2016185242C15744967 @default.
- W2016185242 hasConceptScore W2016185242C19417346 @default.
- W2016185242 hasConceptScore W2016185242C202444582 @default.
- W2016185242 hasConceptScore W2016185242C2524010 @default.
- W2016185242 hasConceptScore W2016185242C33923547 @default.
- W2016185242 hasConceptScore W2016185242C41008148 @default.
- W2016185242 hasConceptScore W2016185242C41608201 @default.
- W2016185242 hasConceptScore W2016185242C80469333 @default.
- W2016185242 hasIssue "1" @default.
- W2016185242 hasLocation W20161852421 @default.
- W2016185242 hasLocation W20161852422 @default.
- W2016185242 hasLocation W20161852423 @default.
- W2016185242 hasOpenAccess W2016185242 @default.
- W2016185242 hasPrimaryLocation W20161852421 @default.
- W2016185242 hasRelatedWork W1521785337 @default.
- W2016185242 hasRelatedWork W1983366713 @default.
- W2016185242 hasRelatedWork W1992602786 @default.
- W2016185242 hasRelatedWork W2068470421 @default.
- W2016185242 hasRelatedWork W2073925946 @default.
- W2016185242 hasRelatedWork W2234982114 @default.
- W2016185242 hasRelatedWork W2766222296 @default.
- W2016185242 hasRelatedWork W2803850028 @default.
- W2016185242 hasRelatedWork W3011491025 @default.
- W2016185242 hasRelatedWork W4236584742 @default.
- W2016185242 isParatext "false" @default.
- W2016185242 isRetracted "false" @default.
- W2016185242 magId "2016185242" @default.
- W2016185242 workType "article" @default.