Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016199013> ?p ?o ?g. }
- W2016199013 endingPage "559" @default.
- W2016199013 startingPage "547" @default.
- W2016199013 abstract "The daily average PM2.5 concentration forecast is a leading component nowadays in air quality research, which is necessary to perform in order to assess the impact of air on the health and welfare of every living being. The present work is aimed at analyzing and benchmarking a neural-network approach to the prediction of average PM2.5 concentrations. The model thus obtained will be indispensable, as a control tool, for the purpose of preventing dangerous situations that may arise. To this end we have obtained data and measurements based on samples taken during the early hours of the day. Results from three different topologies of neural networks were compared so as to identify their potential uses, or rather, their strengths and weaknesses: Multilayer Perceptron (MLP), Radial Basis Function (RBF) and Square Multilayer Perceptron (SMLP). Moreover, two classical models were built (a persistence model and a linear regression), so as to compare their results with the ones provided by the neural network models. The results clearly demonstrated that the neural approach not only outperformed the classical models but also showed fairly similar values among different topologies. Moreover, a differential behavior in terms of stability and length of the training phase emerged during testing as well. The RBF shows up to be the network with the shortest training times, combined with a greater stability during the prediction stage, thus characterizing this topology as an ideal solution for its use in environmental applications instead of the widely used and less effective MLP." @default.
- W2016199013 created "2016-06-24" @default.
- W2016199013 creator A5008746866 @default.
- W2016199013 creator A5033700953 @default.
- W2016199013 creator A5049096208 @default.
- W2016199013 creator A5074809330 @default.
- W2016199013 date "2005-05-01" @default.
- W2016199013 modified "2023-10-06" @default.
- W2016199013 title "Neural network prediction model for fine particulate matter (PM2.5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua)" @default.
- W2016199013 cites W1966507924 @default.
- W2016199013 cites W1966989694 @default.
- W2016199013 cites W1968167049 @default.
- W2016199013 cites W1973824420 @default.
- W2016199013 cites W1976409488 @default.
- W2016199013 cites W1977177161 @default.
- W2016199013 cites W1980462675 @default.
- W2016199013 cites W1984367183 @default.
- W2016199013 cites W1988144823 @default.
- W2016199013 cites W1997811291 @default.
- W2016199013 cites W2007328735 @default.
- W2016199013 cites W2020232291 @default.
- W2016199013 cites W2021329998 @default.
- W2016199013 cites W2022394270 @default.
- W2016199013 cites W2022421762 @default.
- W2016199013 cites W2027319527 @default.
- W2016199013 cites W2028571293 @default.
- W2016199013 cites W2029352085 @default.
- W2016199013 cites W2031459800 @default.
- W2016199013 cites W2031892401 @default.
- W2016199013 cites W2035058881 @default.
- W2016199013 cites W2041178263 @default.
- W2016199013 cites W2043154944 @default.
- W2016199013 cites W2046086616 @default.
- W2016199013 cites W2054576209 @default.
- W2016199013 cites W2063344466 @default.
- W2016199013 cites W2065839892 @default.
- W2016199013 cites W2066469118 @default.
- W2016199013 cites W2067186191 @default.
- W2016199013 cites W2070364167 @default.
- W2016199013 cites W2070429306 @default.
- W2016199013 cites W2071903220 @default.
- W2016199013 cites W2073645681 @default.
- W2016199013 cites W2076230528 @default.
- W2016199013 cites W2081107827 @default.
- W2016199013 cites W2089080661 @default.
- W2016199013 cites W2129005627 @default.
- W2016199013 cites W2130304844 @default.
- W2016199013 cites W2137983211 @default.
- W2016199013 cites W4229880569 @default.
- W2016199013 doi "https://doi.org/10.1016/j.envsoft.2004.03.010" @default.
- W2016199013 hasPublicationYear "2005" @default.
- W2016199013 type Work @default.
- W2016199013 sameAs 2016199013 @default.
- W2016199013 citedByCount "194" @default.
- W2016199013 countsByYear W20161990132012 @default.
- W2016199013 countsByYear W20161990132013 @default.
- W2016199013 countsByYear W20161990132014 @default.
- W2016199013 countsByYear W20161990132015 @default.
- W2016199013 countsByYear W20161990132016 @default.
- W2016199013 countsByYear W20161990132017 @default.
- W2016199013 countsByYear W20161990132018 @default.
- W2016199013 countsByYear W20161990132019 @default.
- W2016199013 countsByYear W20161990132020 @default.
- W2016199013 countsByYear W20161990132021 @default.
- W2016199013 countsByYear W20161990132022 @default.
- W2016199013 countsByYear W20161990132023 @default.
- W2016199013 crossrefType "journal-article" @default.
- W2016199013 hasAuthorship W2016199013A5008746866 @default.
- W2016199013 hasAuthorship W2016199013A5033700953 @default.
- W2016199013 hasAuthorship W2016199013A5049096208 @default.
- W2016199013 hasAuthorship W2016199013A5074809330 @default.
- W2016199013 hasConcept C105795698 @default.
- W2016199013 hasConcept C111919701 @default.
- W2016199013 hasConcept C112972136 @default.
- W2016199013 hasConcept C119857082 @default.
- W2016199013 hasConcept C139945424 @default.
- W2016199013 hasConcept C154945302 @default.
- W2016199013 hasConcept C179717631 @default.
- W2016199013 hasConcept C199845137 @default.
- W2016199013 hasConcept C33923547 @default.
- W2016199013 hasConcept C41008148 @default.
- W2016199013 hasConcept C50644808 @default.
- W2016199013 hasConcept C60908668 @default.
- W2016199013 hasConcept C69738355 @default.
- W2016199013 hasConcept C98856871 @default.
- W2016199013 hasConceptScore W2016199013C105795698 @default.
- W2016199013 hasConceptScore W2016199013C111919701 @default.
- W2016199013 hasConceptScore W2016199013C112972136 @default.
- W2016199013 hasConceptScore W2016199013C119857082 @default.
- W2016199013 hasConceptScore W2016199013C139945424 @default.
- W2016199013 hasConceptScore W2016199013C154945302 @default.
- W2016199013 hasConceptScore W2016199013C179717631 @default.
- W2016199013 hasConceptScore W2016199013C199845137 @default.
- W2016199013 hasConceptScore W2016199013C33923547 @default.
- W2016199013 hasConceptScore W2016199013C41008148 @default.
- W2016199013 hasConceptScore W2016199013C50644808 @default.
- W2016199013 hasConceptScore W2016199013C60908668 @default.
- W2016199013 hasConceptScore W2016199013C69738355 @default.