Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016200515> ?p ?o ?g. }
- W2016200515 endingPage "1289" @default.
- W2016200515 startingPage "1280" @default.
- W2016200515 abstract "Third-generation photovolatics require demanding cost and power conversion efficiency standards, which may be achieved through efficient exciton multiplication. Therefore, generating more than one electron–hole pair from the absorption of a single photon has vast ramifications on solar power conversion technology. Unlike their bulk counterparts, irradiated semiconductor quantum dots exhibit efficient exciton multiplication, due to confinement-enhanced Coulomb interactions and slower nonradiative losses. The exact characterization of the complicated photoexcited processes within quantum-dot photovoltaics is a work in progress. In this Account, we focus on the photophysics of nanocrystals and investigate three constituent processes of exciton multiplication, including photoexcitation, phonon-induced dephasing, and impact ionization. We quantify the role of each process in exciton multiplication through ab initio computation and analysis of many-electron wave functions.The probability of observing a multiple exciton in a photoexcited state is proportional to the magnitude of electron correlation, where correlated electrons can be simultaneously promoted across the band gap. Energies of multiple excitons are determined directly from the excited state wave functions, defining the threshold for multiple exciton generation. This threshold is strongly perturbed in the presence of surface defects, dopants, and ionization.Within a few femtoseconds following photoexcitation, the quantum state loses coherence through interactions with the vibrating atomic lattice. The phase relationship between single excitons and multiple excitons dissipates first, followed by multiple exciton fission. Single excitons are coupled to multiple excitons through Coulomb and electron-phonon interactions, and as a consequence, single excitons convert to multiple excitons and vice versa. Here, exciton multiplication depends on the initial energy and coupling magnitude and competes with electron–phonon energy relaxation. Multiple excitons are generated through impact ionization within picoseconds.The basis of exciton multiplication in quantum dots is the collective result of photoexcitation, dephasing, and nonadiabatic evolution. Each process is characterized by a distinct time-scale, and the overall multiple exciton generation dynamics is complete by about 10 ps. Without relying on semiempirical parameters, we computed quantum mechanical probabilities of multiple excitons for small model systems. Because exciton correlations and coherences are microscopic, quantum properties, results for small model systems can be extrapolated to larger, realistic quantum dots." @default.
- W2016200515 created "2016-06-24" @default.
- W2016200515 creator A5029105310 @default.
- W2016200515 creator A5044654373 @default.
- W2016200515 creator A5061633372 @default.
- W2016200515 date "2013-03-04" @default.
- W2016200515 modified "2023-10-18" @default.
- W2016200515 title "Exciton Multiplication from First Principles" @default.
- W2016200515 cites W1497033841 @default.
- W2016200515 cites W1966746772 @default.
- W2016200515 cites W1967282001 @default.
- W2016200515 cites W1969127535 @default.
- W2016200515 cites W1970947445 @default.
- W2016200515 cites W1982102759 @default.
- W2016200515 cites W1995255397 @default.
- W2016200515 cites W2007019124 @default.
- W2016200515 cites W2008498840 @default.
- W2016200515 cites W2009873025 @default.
- W2016200515 cites W2011399034 @default.
- W2016200515 cites W2013990184 @default.
- W2016200515 cites W2014628781 @default.
- W2016200515 cites W2017987747 @default.
- W2016200515 cites W2022356557 @default.
- W2016200515 cites W2025080696 @default.
- W2016200515 cites W2028126701 @default.
- W2016200515 cites W2028539913 @default.
- W2016200515 cites W2033682908 @default.
- W2016200515 cites W2035126663 @default.
- W2016200515 cites W2047251061 @default.
- W2016200515 cites W2047677481 @default.
- W2016200515 cites W2053206686 @default.
- W2016200515 cites W2055878835 @default.
- W2016200515 cites W2058843281 @default.
- W2016200515 cites W2059699363 @default.
- W2016200515 cites W2061240782 @default.
- W2016200515 cites W2071148840 @default.
- W2016200515 cites W2072540721 @default.
- W2016200515 cites W2074682781 @default.
- W2016200515 cites W2089610260 @default.
- W2016200515 cites W2094919627 @default.
- W2016200515 cites W2116956555 @default.
- W2016200515 cites W2121296270 @default.
- W2016200515 cites W2123605247 @default.
- W2016200515 cites W2125807564 @default.
- W2016200515 cites W2127371360 @default.
- W2016200515 cites W2142175727 @default.
- W2016200515 cites W2320352200 @default.
- W2016200515 cites W2331136176 @default.
- W2016200515 cites W2595253790 @default.
- W2016200515 cites W3106428730 @default.
- W2016200515 doi "https://doi.org/10.1021/ar3002365" @default.
- W2016200515 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23459543" @default.
- W2016200515 hasPublicationYear "2013" @default.
- W2016200515 type Work @default.
- W2016200515 sameAs 2016200515 @default.
- W2016200515 citedByCount "30" @default.
- W2016200515 countsByYear W20162005152013 @default.
- W2016200515 countsByYear W20162005152014 @default.
- W2016200515 countsByYear W20162005152015 @default.
- W2016200515 countsByYear W20162005152016 @default.
- W2016200515 countsByYear W20162005152017 @default.
- W2016200515 countsByYear W20162005152018 @default.
- W2016200515 countsByYear W20162005152019 @default.
- W2016200515 countsByYear W20162005152020 @default.
- W2016200515 countsByYear W20162005152021 @default.
- W2016200515 countsByYear W20162005152023 @default.
- W2016200515 crossrefType "journal-article" @default.
- W2016200515 hasAuthorship W2016200515A5029105310 @default.
- W2016200515 hasAuthorship W2016200515A5044654373 @default.
- W2016200515 hasAuthorship W2016200515A5061633372 @default.
- W2016200515 hasConcept C121332964 @default.
- W2016200515 hasConcept C124657808 @default.
- W2016200515 hasConcept C147120987 @default.
- W2016200515 hasConcept C155220765 @default.
- W2016200515 hasConcept C165330911 @default.
- W2016200515 hasConcept C17729963 @default.
- W2016200515 hasConcept C181500209 @default.
- W2016200515 hasConcept C184779094 @default.
- W2016200515 hasConcept C26873012 @default.
- W2016200515 hasConcept C49023278 @default.
- W2016200515 hasConcept C58041110 @default.
- W2016200515 hasConcept C62520636 @default.
- W2016200515 hasConceptScore W2016200515C121332964 @default.
- W2016200515 hasConceptScore W2016200515C124657808 @default.
- W2016200515 hasConceptScore W2016200515C147120987 @default.
- W2016200515 hasConceptScore W2016200515C155220765 @default.
- W2016200515 hasConceptScore W2016200515C165330911 @default.
- W2016200515 hasConceptScore W2016200515C17729963 @default.
- W2016200515 hasConceptScore W2016200515C181500209 @default.
- W2016200515 hasConceptScore W2016200515C184779094 @default.
- W2016200515 hasConceptScore W2016200515C26873012 @default.
- W2016200515 hasConceptScore W2016200515C49023278 @default.
- W2016200515 hasConceptScore W2016200515C58041110 @default.
- W2016200515 hasConceptScore W2016200515C62520636 @default.
- W2016200515 hasIssue "6" @default.
- W2016200515 hasLocation W20162005151 @default.
- W2016200515 hasLocation W20162005152 @default.
- W2016200515 hasOpenAccess W2016200515 @default.