Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016201611> ?p ?o ?g. }
- W2016201611 endingPage "591" @default.
- W2016201611 startingPage "582" @default.
- W2016201611 abstract "This paper studies a semi-supervised Bayesian unmixing algorithm for hyperspectral images. This algorithm is based on the normal compositional model recently introduced by Eismann and Stein. The normal compositional model assumes that each pixel of the image is modeled as a linear combination of an unknown number of pure materials, called <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>endmembers</i> . However, contrary to the classical linear mixing model, these endmembers are supposed to be random in order to model uncertainties regarding their knowledge. This paper proposes to estimate the mixture coefficients of the Normal Compositional Model (referred to as <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>abundances</i> ) as well as their number using a reversible jump Bayesian algorithm. The performance of the proposed methodology is evaluated thanks to simulations conducted on synthetic and real AVIRIS images." @default.
- W2016201611 created "2016-06-24" @default.
- W2016201611 creator A5000091092 @default.
- W2016201611 creator A5018816346 @default.
- W2016201611 creator A5024149247 @default.
- W2016201611 date "2010-06-01" @default.
- W2016201611 modified "2023-10-12" @default.
- W2016201611 title "Estimating the Number of Endmembers in Hyperspectral Images Using the Normal Compositional Model and a Hierarchical Bayesian Algorithm" @default.
- W2016201611 cites W1984544290 @default.
- W2016201611 cites W1994966506 @default.
- W2016201611 cites W2006681603 @default.
- W2016201611 cites W2009463641 @default.
- W2016201611 cites W2022470997 @default.
- W2016201611 cites W2032282107 @default.
- W2016201611 cites W2038885294 @default.
- W2016201611 cites W2054658115 @default.
- W2016201611 cites W2055225600 @default.
- W2016201611 cites W2090862158 @default.
- W2016201611 cites W2095665557 @default.
- W2016201611 cites W2096710051 @default.
- W2016201611 cites W2097211423 @default.
- W2016201611 cites W2106706098 @default.
- W2016201611 cites W2115366158 @default.
- W2016201611 cites W2117838564 @default.
- W2016201611 cites W2123038108 @default.
- W2016201611 cites W2128686953 @default.
- W2016201611 cites W2136211638 @default.
- W2016201611 cites W2142635246 @default.
- W2016201611 cites W2143500192 @default.
- W2016201611 cites W2150875549 @default.
- W2016201611 cites W2155421090 @default.
- W2016201611 cites W2157321686 @default.
- W2016201611 cites W2163436471 @default.
- W2016201611 cites W2167586448 @default.
- W2016201611 cites W2406093411 @default.
- W2016201611 cites W2506684654 @default.
- W2016201611 cites W4233760599 @default.
- W2016201611 cites W4292691288 @default.
- W2016201611 doi "https://doi.org/10.1109/jstsp.2009.2038212" @default.
- W2016201611 hasPublicationYear "2010" @default.
- W2016201611 type Work @default.
- W2016201611 sameAs 2016201611 @default.
- W2016201611 citedByCount "63" @default.
- W2016201611 countsByYear W20162016112012 @default.
- W2016201611 countsByYear W20162016112013 @default.
- W2016201611 countsByYear W20162016112014 @default.
- W2016201611 countsByYear W20162016112015 @default.
- W2016201611 countsByYear W20162016112016 @default.
- W2016201611 countsByYear W20162016112017 @default.
- W2016201611 countsByYear W20162016112018 @default.
- W2016201611 countsByYear W20162016112019 @default.
- W2016201611 countsByYear W20162016112020 @default.
- W2016201611 countsByYear W20162016112021 @default.
- W2016201611 countsByYear W20162016112022 @default.
- W2016201611 countsByYear W20162016112023 @default.
- W2016201611 crossrefType "journal-article" @default.
- W2016201611 hasAuthorship W2016201611A5000091092 @default.
- W2016201611 hasAuthorship W2016201611A5018816346 @default.
- W2016201611 hasAuthorship W2016201611A5024149247 @default.
- W2016201611 hasBestOaLocation W20162016112 @default.
- W2016201611 hasConcept C107673813 @default.
- W2016201611 hasConcept C11413529 @default.
- W2016201611 hasConcept C115961682 @default.
- W2016201611 hasConcept C153180895 @default.
- W2016201611 hasConcept C154945302 @default.
- W2016201611 hasConcept C159078339 @default.
- W2016201611 hasConcept C160633673 @default.
- W2016201611 hasConcept C33923547 @default.
- W2016201611 hasConcept C41008148 @default.
- W2016201611 hasConceptScore W2016201611C107673813 @default.
- W2016201611 hasConceptScore W2016201611C11413529 @default.
- W2016201611 hasConceptScore W2016201611C115961682 @default.
- W2016201611 hasConceptScore W2016201611C153180895 @default.
- W2016201611 hasConceptScore W2016201611C154945302 @default.
- W2016201611 hasConceptScore W2016201611C159078339 @default.
- W2016201611 hasConceptScore W2016201611C160633673 @default.
- W2016201611 hasConceptScore W2016201611C33923547 @default.
- W2016201611 hasConceptScore W2016201611C41008148 @default.
- W2016201611 hasIssue "3" @default.
- W2016201611 hasLocation W20162016111 @default.
- W2016201611 hasLocation W20162016112 @default.
- W2016201611 hasLocation W20162016113 @default.
- W2016201611 hasLocation W20162016114 @default.
- W2016201611 hasOpenAccess W2016201611 @default.
- W2016201611 hasPrimaryLocation W20162016111 @default.
- W2016201611 hasRelatedWork W2019190440 @default.
- W2016201611 hasRelatedWork W2027399350 @default.
- W2016201611 hasRelatedWork W2044184146 @default.
- W2016201611 hasRelatedWork W2060875994 @default.
- W2016201611 hasRelatedWork W2067727414 @default.
- W2016201611 hasRelatedWork W2070598848 @default.
- W2016201611 hasRelatedWork W2072166414 @default.
- W2016201611 hasRelatedWork W3034375524 @default.
- W2016201611 hasRelatedWork W3034864990 @default.
- W2016201611 hasRelatedWork W3209970181 @default.
- W2016201611 hasVolume "4" @default.
- W2016201611 isParatext "false" @default.
- W2016201611 isRetracted "false" @default.