Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016202382> ?p ?o ?g. }
- W2016202382 endingPage "902" @default.
- W2016202382 startingPage "894" @default.
- W2016202382 abstract "The linear quadratic equation for fractionated radiotherapy has already been adapted to include a time factor for tumour repopulation: loge cell kill (E) is given as a function of dose per fraction (d), number of fractions (n), overall treatment time (T) and the clonogen doubling time (Tp). By incorporating a normal tissue isoeffect and replacing the relationship between T and n by a function f, the equation for E can be rewritten as a more complex function of d. In this form, E and d are continuous variables so that the dose per fraction (d′) required to produce maximum values of E for isoeffective late normal tissue effects can be found by differential calculus. The derived equation takes the form and when solved for d provides a direct estimation of the optimum dose per fraction. Where normal tissue sparing is possible and the tumour dose z is related to the normal tissue dose d, the optimum dose per fraction z′ can be found by solving the equation The results show that a critical minimum dose per fraction is required to counteract rapid tumour clonogen repopulation in both conventional and accelerated radiotherapy. The calculus method is reasonably accurate for larger fraction numbers, when clonogen doubling times are 3.5 days or longer and for conventional radiotherapy given 5 days per week. The model is even more accurate for accelerated hyperfractionated radiotherapy providing that there is complete repair between successive fractions. Where greater normal tissue sparing is possible, as with focal teletherapy methods and brachytherapy, higher tumour doses per fraction can be used to increase further the tumour cell kill without exceeding normal tissue tolerance. These predicted doses per fraction are consistent with clinical experience when the given constraints in terms of frequency of treatment are considered. The model described can be used for tumours in which repopulation occurs at a constant rate throughout treatment. For tumours in which accelerated repopulation occurs, the optimum dose per fraction can be separately calculated for the initial phase of slow repopulation (for which very small doses per fraction are optimal) and also for the second phase of rapid repopulation (for which either accelerated hyperfractionated treatments or hypofractionated focal methods of treatment would be appropriate). The limitations of the model are fully discussed including the need for accurate radiobiological predictive assays. In the future such assays of pre-treatment doubling times and tumour cell radiosensitivities could be used to determine reasonable ranges for the optimum dose per fraction in experimental tumours and subsequently in clinical trials. This approach could produce major improvements in the therapeutic potential of radiotherapy." @default.
- W2016202382 created "2016-06-24" @default.
- W2016202382 creator A5052148476 @default.
- W2016202382 creator A5063288167 @default.
- W2016202382 creator A5089918982 @default.
- W2016202382 date "1995-08-01" @default.
- W2016202382 modified "2023-09-26" @default.
- W2016202382 title "Derivation of the optimum dose per fraction from the linear quadratic model" @default.
- W2016202382 cites W1963781523 @default.
- W2016202382 cites W1965359016 @default.
- W2016202382 cites W1966788147 @default.
- W2016202382 cites W1971747664 @default.
- W2016202382 cites W1974881970 @default.
- W2016202382 cites W1976871572 @default.
- W2016202382 cites W1980126077 @default.
- W2016202382 cites W1996242298 @default.
- W2016202382 cites W2017090436 @default.
- W2016202382 cites W2023676537 @default.
- W2016202382 cites W2026055653 @default.
- W2016202382 cites W2029517266 @default.
- W2016202382 cites W2037745749 @default.
- W2016202382 cites W2043823599 @default.
- W2016202382 cites W2050754631 @default.
- W2016202382 cites W2056044238 @default.
- W2016202382 cites W2061626590 @default.
- W2016202382 cites W2065106881 @default.
- W2016202382 cites W2070423003 @default.
- W2016202382 cites W2074654613 @default.
- W2016202382 cites W2078855847 @default.
- W2016202382 cites W2085170033 @default.
- W2016202382 cites W2085460880 @default.
- W2016202382 cites W2094768863 @default.
- W2016202382 cites W2105150213 @default.
- W2016202382 cites W2106816194 @default.
- W2016202382 cites W2111685034 @default.
- W2016202382 cites W2144078930 @default.
- W2016202382 cites W2147572114 @default.
- W2016202382 cites W2160516370 @default.
- W2016202382 doi "https://doi.org/10.1259/0007-1285-68-812-894" @default.
- W2016202382 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/7551788" @default.
- W2016202382 hasPublicationYear "1995" @default.
- W2016202382 type Work @default.
- W2016202382 sameAs 2016202382 @default.
- W2016202382 citedByCount "53" @default.
- W2016202382 countsByYear W20162023822012 @default.
- W2016202382 countsByYear W20162023822013 @default.
- W2016202382 countsByYear W20162023822014 @default.
- W2016202382 countsByYear W20162023822015 @default.
- W2016202382 countsByYear W20162023822016 @default.
- W2016202382 countsByYear W20162023822017 @default.
- W2016202382 countsByYear W20162023822018 @default.
- W2016202382 countsByYear W20162023822019 @default.
- W2016202382 countsByYear W20162023822020 @default.
- W2016202382 countsByYear W20162023822021 @default.
- W2016202382 countsByYear W20162023822022 @default.
- W2016202382 crossrefType "journal-article" @default.
- W2016202382 hasAuthorship W2016202382A5052148476 @default.
- W2016202382 hasAuthorship W2016202382A5063288167 @default.
- W2016202382 hasAuthorship W2016202382A5089918982 @default.
- W2016202382 hasConcept C109159458 @default.
- W2016202382 hasConcept C112705442 @default.
- W2016202382 hasConcept C126322002 @default.
- W2016202382 hasConcept C14036430 @default.
- W2016202382 hasConcept C141071460 @default.
- W2016202382 hasConcept C1491633281 @default.
- W2016202382 hasConcept C149629883 @default.
- W2016202382 hasConcept C178790620 @default.
- W2016202382 hasConcept C185592680 @default.
- W2016202382 hasConcept C2777416452 @default.
- W2016202382 hasConcept C2780918802 @default.
- W2016202382 hasConcept C2781233306 @default.
- W2016202382 hasConcept C28328180 @default.
- W2016202382 hasConcept C2989005 @default.
- W2016202382 hasConcept C33923547 @default.
- W2016202382 hasConcept C48900799 @default.
- W2016202382 hasConcept C509974204 @default.
- W2016202382 hasConcept C54355233 @default.
- W2016202382 hasConcept C55493867 @default.
- W2016202382 hasConcept C71924100 @default.
- W2016202382 hasConcept C78458016 @default.
- W2016202382 hasConcept C86803240 @default.
- W2016202382 hasConceptScore W2016202382C109159458 @default.
- W2016202382 hasConceptScore W2016202382C112705442 @default.
- W2016202382 hasConceptScore W2016202382C126322002 @default.
- W2016202382 hasConceptScore W2016202382C14036430 @default.
- W2016202382 hasConceptScore W2016202382C141071460 @default.
- W2016202382 hasConceptScore W2016202382C1491633281 @default.
- W2016202382 hasConceptScore W2016202382C149629883 @default.
- W2016202382 hasConceptScore W2016202382C178790620 @default.
- W2016202382 hasConceptScore W2016202382C185592680 @default.
- W2016202382 hasConceptScore W2016202382C2777416452 @default.
- W2016202382 hasConceptScore W2016202382C2780918802 @default.
- W2016202382 hasConceptScore W2016202382C2781233306 @default.
- W2016202382 hasConceptScore W2016202382C28328180 @default.
- W2016202382 hasConceptScore W2016202382C2989005 @default.
- W2016202382 hasConceptScore W2016202382C33923547 @default.
- W2016202382 hasConceptScore W2016202382C48900799 @default.
- W2016202382 hasConceptScore W2016202382C509974204 @default.