Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016202965> ?p ?o ?g. }
- W2016202965 abstract "In genomic sequence analysis tasks like splice site recognition or promoter identification, large amounts of training sequences are available, and indeed needed to achieve sufficiently high classification performances. In this work we study two recently proposed and successfully used kernels, namely the Spectrum kernel and the Weighted Degree kernel (WD). In particular, we suggest several extensions using Suffix Trees and modifications of an SMO-like SVM training algorithm in order to accelerate the training of the SVMs and their evaluation on test sequences. Our simulations show that for the spectrum kernel and WD kernel, large scale SVM training can be accelerated by factors of 20 and 4 times, respectively, while using much less memory (e.g. no kernel caching). The evaluation on new sequences is often several thousand times faster using the new techniques (depending on the number of Support Vectors). Our method allows us to train on sets as large as one million sequences." @default.
- W2016202965 created "2016-06-24" @default.
- W2016202965 creator A5035416263 @default.
- W2016202965 creator A5044005697 @default.
- W2016202965 creator A5048319087 @default.
- W2016202965 date "2005-01-01" @default.
- W2016202965 modified "2023-09-27" @default.
- W2016202965 title "Large scale genomic sequence SVM classifiers" @default.
- W2016202965 cites W1512098439 @default.
- W2016202965 cites W1542652324 @default.
- W2016202965 cites W1563088657 @default.
- W2016202965 cites W1576520375 @default.
- W2016202965 cites W1601740268 @default.
- W2016202965 cites W1602916555 @default.
- W2016202965 cites W1968114652 @default.
- W2016202965 cites W2020816856 @default.
- W2016202965 cites W2099401974 @default.
- W2016202965 cites W2106868411 @default.
- W2016202965 cites W2107751776 @default.
- W2016202965 cites W2108995755 @default.
- W2016202965 cites W2111765516 @default.
- W2016202965 cites W2114049512 @default.
- W2016202965 cites W2114281975 @default.
- W2016202965 cites W2119821739 @default.
- W2016202965 cites W2124158580 @default.
- W2016202965 cites W2124225821 @default.
- W2016202965 cites W2136145671 @default.
- W2016202965 cites W2149684865 @default.
- W2016202965 cites W2155653793 @default.
- W2016202965 cites W2156455118 @default.
- W2016202965 cites W2539561358 @default.
- W2016202965 cites W3023786531 @default.
- W2016202965 cites W3144379435 @default.
- W2016202965 cites W854322902 @default.
- W2016202965 doi "https://doi.org/10.1145/1102351.1102458" @default.
- W2016202965 hasPublicationYear "2005" @default.
- W2016202965 type Work @default.
- W2016202965 sameAs 2016202965 @default.
- W2016202965 citedByCount "42" @default.
- W2016202965 countsByYear W20162029652012 @default.
- W2016202965 countsByYear W20162029652013 @default.
- W2016202965 countsByYear W20162029652015 @default.
- W2016202965 countsByYear W20162029652016 @default.
- W2016202965 countsByYear W20162029652017 @default.
- W2016202965 countsByYear W20162029652018 @default.
- W2016202965 countsByYear W20162029652019 @default.
- W2016202965 countsByYear W20162029652020 @default.
- W2016202965 countsByYear W20162029652021 @default.
- W2016202965 countsByYear W20162029652022 @default.
- W2016202965 crossrefType "proceedings-article" @default.
- W2016202965 hasAuthorship W2016202965A5035416263 @default.
- W2016202965 hasAuthorship W2016202965A5044005697 @default.
- W2016202965 hasAuthorship W2016202965A5048319087 @default.
- W2016202965 hasBestOaLocation W20162029652 @default.
- W2016202965 hasConcept C10719679 @default.
- W2016202965 hasConcept C114614502 @default.
- W2016202965 hasConcept C116834253 @default.
- W2016202965 hasConcept C119857082 @default.
- W2016202965 hasConcept C121332964 @default.
- W2016202965 hasConcept C122280245 @default.
- W2016202965 hasConcept C12267149 @default.
- W2016202965 hasConcept C140417398 @default.
- W2016202965 hasConcept C153180895 @default.
- W2016202965 hasConcept C154945302 @default.
- W2016202965 hasConcept C2778112365 @default.
- W2016202965 hasConcept C2778755073 @default.
- W2016202965 hasConcept C33923547 @default.
- W2016202965 hasConcept C41008148 @default.
- W2016202965 hasConcept C54355233 @default.
- W2016202965 hasConcept C55851704 @default.
- W2016202965 hasConcept C59822182 @default.
- W2016202965 hasConcept C62520636 @default.
- W2016202965 hasConcept C74193536 @default.
- W2016202965 hasConcept C75866337 @default.
- W2016202965 hasConcept C86803240 @default.
- W2016202965 hasConceptScore W2016202965C10719679 @default.
- W2016202965 hasConceptScore W2016202965C114614502 @default.
- W2016202965 hasConceptScore W2016202965C116834253 @default.
- W2016202965 hasConceptScore W2016202965C119857082 @default.
- W2016202965 hasConceptScore W2016202965C121332964 @default.
- W2016202965 hasConceptScore W2016202965C122280245 @default.
- W2016202965 hasConceptScore W2016202965C12267149 @default.
- W2016202965 hasConceptScore W2016202965C140417398 @default.
- W2016202965 hasConceptScore W2016202965C153180895 @default.
- W2016202965 hasConceptScore W2016202965C154945302 @default.
- W2016202965 hasConceptScore W2016202965C2778112365 @default.
- W2016202965 hasConceptScore W2016202965C2778755073 @default.
- W2016202965 hasConceptScore W2016202965C33923547 @default.
- W2016202965 hasConceptScore W2016202965C41008148 @default.
- W2016202965 hasConceptScore W2016202965C54355233 @default.
- W2016202965 hasConceptScore W2016202965C55851704 @default.
- W2016202965 hasConceptScore W2016202965C59822182 @default.
- W2016202965 hasConceptScore W2016202965C62520636 @default.
- W2016202965 hasConceptScore W2016202965C74193536 @default.
- W2016202965 hasConceptScore W2016202965C75866337 @default.
- W2016202965 hasConceptScore W2016202965C86803240 @default.
- W2016202965 hasLocation W20162029651 @default.
- W2016202965 hasLocation W20162029652 @default.
- W2016202965 hasOpenAccess W2016202965 @default.
- W2016202965 hasPrimaryLocation W20162029651 @default.