Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016203627> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2016203627 endingPage "1534" @default.
- W2016203627 startingPage "1519" @default.
- W2016203627 abstract "Real-world applications of multi-objective optimization often involve numerous objective functions. But while such problems are in general computationally intractable, it is seldom necessary to determine the Pareto optimal set exactly. A significantly smaller computational burden thus motivates the loss of precision if the size of the loss can be estimated. We describe a method for finding an optimal reduction of the set of objectives yielding a smaller problem whose Pareto optimal set w.r.t. a discrete subset of the decision space is as close as possible to that of the original set of objectives. Utilizing a new characterization of Pareto optimality and presuming a finite decision space, we derive a program whose solution represents an optimal reduction. We also propose an approximate, computationally less demanding formulation which utilizes correlations between the objectives and separates into two parts. Numerical results from an industrial instance concerning the configuration of heavy-duty trucks are also reported, demonstrating the usefulness of the method developed. The results show that multi-objective optimization problems can be significantly simplified with an induced error which can be measured." @default.
- W2016203627 created "2016-06-24" @default.
- W2016203627 creator A5008055628 @default.
- W2016203627 creator A5012639762 @default.
- W2016203627 creator A5049531929 @default.
- W2016203627 date "2010-12-01" @default.
- W2016203627 modified "2023-09-27" @default.
- W2016203627 title "Approximating the Pareto optimal set using a reduced set of objective functions" @default.
- W2016203627 cites W2002895030 @default.
- W2016203627 cites W2005599439 @default.
- W2016203627 cites W2026520454 @default.
- W2016203627 cites W2028444861 @default.
- W2016203627 cites W2037534711 @default.
- W2016203627 cites W2049864887 @default.
- W2016203627 cites W2067514519 @default.
- W2016203627 cites W2081919627 @default.
- W2016203627 cites W2085830763 @default.
- W2016203627 cites W2093659998 @default.
- W2016203627 cites W2108747258 @default.
- W2016203627 cites W2116858902 @default.
- W2016203627 cites W2167953919 @default.
- W2016203627 doi "https://doi.org/10.1016/j.ejor.2010.07.004" @default.
- W2016203627 hasPublicationYear "2010" @default.
- W2016203627 type Work @default.
- W2016203627 sameAs 2016203627 @default.
- W2016203627 citedByCount "23" @default.
- W2016203627 countsByYear W20162036272012 @default.
- W2016203627 countsByYear W20162036272013 @default.
- W2016203627 countsByYear W20162036272014 @default.
- W2016203627 countsByYear W20162036272015 @default.
- W2016203627 countsByYear W20162036272017 @default.
- W2016203627 countsByYear W20162036272018 @default.
- W2016203627 countsByYear W20162036272019 @default.
- W2016203627 countsByYear W20162036272020 @default.
- W2016203627 countsByYear W20162036272021 @default.
- W2016203627 countsByYear W20162036272022 @default.
- W2016203627 countsByYear W20162036272023 @default.
- W2016203627 crossrefType "journal-article" @default.
- W2016203627 hasAuthorship W2016203627A5008055628 @default.
- W2016203627 hasAuthorship W2016203627A5012639762 @default.
- W2016203627 hasAuthorship W2016203627A5049531929 @default.
- W2016203627 hasConcept C105795698 @default.
- W2016203627 hasConcept C118127601 @default.
- W2016203627 hasConcept C126255220 @default.
- W2016203627 hasConcept C133514767 @default.
- W2016203627 hasConcept C137635306 @default.
- W2016203627 hasConcept C144237770 @default.
- W2016203627 hasConcept C147581598 @default.
- W2016203627 hasConcept C15312841 @default.
- W2016203627 hasConcept C177264268 @default.
- W2016203627 hasConcept C199360897 @default.
- W2016203627 hasConcept C2986314615 @default.
- W2016203627 hasConcept C33923547 @default.
- W2016203627 hasConcept C38814450 @default.
- W2016203627 hasConcept C41008148 @default.
- W2016203627 hasConcept C68781425 @default.
- W2016203627 hasConceptScore W2016203627C105795698 @default.
- W2016203627 hasConceptScore W2016203627C118127601 @default.
- W2016203627 hasConceptScore W2016203627C126255220 @default.
- W2016203627 hasConceptScore W2016203627C133514767 @default.
- W2016203627 hasConceptScore W2016203627C137635306 @default.
- W2016203627 hasConceptScore W2016203627C144237770 @default.
- W2016203627 hasConceptScore W2016203627C147581598 @default.
- W2016203627 hasConceptScore W2016203627C15312841 @default.
- W2016203627 hasConceptScore W2016203627C177264268 @default.
- W2016203627 hasConceptScore W2016203627C199360897 @default.
- W2016203627 hasConceptScore W2016203627C2986314615 @default.
- W2016203627 hasConceptScore W2016203627C33923547 @default.
- W2016203627 hasConceptScore W2016203627C38814450 @default.
- W2016203627 hasConceptScore W2016203627C41008148 @default.
- W2016203627 hasConceptScore W2016203627C68781425 @default.
- W2016203627 hasIssue "3" @default.
- W2016203627 hasLocation W20162036271 @default.
- W2016203627 hasOpenAccess W2016203627 @default.
- W2016203627 hasPrimaryLocation W20162036271 @default.
- W2016203627 hasRelatedWork W1493202049 @default.
- W2016203627 hasRelatedWork W1993518163 @default.
- W2016203627 hasRelatedWork W2058725370 @default.
- W2016203627 hasRelatedWork W2060580252 @default.
- W2016203627 hasRelatedWork W2165517899 @default.
- W2016203627 hasRelatedWork W2166283373 @default.
- W2016203627 hasRelatedWork W2312653356 @default.
- W2016203627 hasRelatedWork W2376562346 @default.
- W2016203627 hasRelatedWork W2101714759 @default.
- W2016203627 hasRelatedWork W2503323040 @default.
- W2016203627 hasVolume "207" @default.
- W2016203627 isParatext "false" @default.
- W2016203627 isRetracted "false" @default.
- W2016203627 magId "2016203627" @default.
- W2016203627 workType "article" @default.