Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016207987> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2016207987 abstract "Wavelet parameters (e.g., wavelet type, level of decomposition) affect the perfor- mance of the wavelet denoising algorithm in hyperspectral applications. Current studies select the best wavelet parameters for a single spectral curve by comparing similarity criteria such as spectral angle (SA). However, the method to find the best parameters for a spectral library that contains multiple spectra has not been studied. In this paper, a criterion named normalized spectral angle (NSA) is proposed. By comparing NSA, the best combination of parameters for a spectral library can be selected. Moreover, a fast algorithm based on threshold constraint and machine learning is developed to reduce the time of a full search. After several iterations of learning, the combination of parameters that constantly surpasses a threshold is selected. The experiments proved that by using the NSA criterion, the SA values decreased significantly, and the fast algorithm could save 80% time consumption, while the denoising performance was not obviously impaired. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). (DOI: 10.1117/ 1.JRS.6.063579)" @default.
- W2016207987 created "2016-06-24" @default.
- W2016207987 creator A5002618865 @default.
- W2016207987 creator A5003720426 @default.
- W2016207987 creator A5009105404 @default.
- W2016207987 creator A5056744235 @default.
- W2016207987 creator A5057047083 @default.
- W2016207987 date "2012-10-04" @default.
- W2016207987 modified "2023-09-24" @default.
- W2016207987 title "Parameters optimization for wavelet denoising based on normalized spectral angle and threshold constraint machine learning" @default.
- W2016207987 cites W1972714392 @default.
- W2016207987 cites W1983476574 @default.
- W2016207987 cites W1988915467 @default.
- W2016207987 cites W1988917938 @default.
- W2016207987 cites W2048739173 @default.
- W2016207987 cites W2063409733 @default.
- W2016207987 cites W2078293033 @default.
- W2016207987 cites W2080433909 @default.
- W2016207987 cites W2093628091 @default.
- W2016207987 cites W2127141393 @default.
- W2016207987 cites W2132984323 @default.
- W2016207987 cites W2142192675 @default.
- W2016207987 cites W2146842127 @default.
- W2016207987 cites W2158940042 @default.
- W2016207987 cites W2359947230 @default.
- W2016207987 cites W2361952963 @default.
- W2016207987 cites W2366794431 @default.
- W2016207987 cites W2388018018 @default.
- W2016207987 doi "https://doi.org/10.1117/1.jrs.6.063579" @default.
- W2016207987 hasPublicationYear "2012" @default.
- W2016207987 type Work @default.
- W2016207987 sameAs 2016207987 @default.
- W2016207987 citedByCount "1" @default.
- W2016207987 countsByYear W20162079872015 @default.
- W2016207987 crossrefType "journal-article" @default.
- W2016207987 hasAuthorship W2016207987A5002618865 @default.
- W2016207987 hasAuthorship W2016207987A5003720426 @default.
- W2016207987 hasAuthorship W2016207987A5009105404 @default.
- W2016207987 hasAuthorship W2016207987A5056744235 @default.
- W2016207987 hasAuthorship W2016207987A5057047083 @default.
- W2016207987 hasConcept C11413529 @default.
- W2016207987 hasConcept C153180895 @default.
- W2016207987 hasConcept C154945302 @default.
- W2016207987 hasConcept C159078339 @default.
- W2016207987 hasConcept C163294075 @default.
- W2016207987 hasConcept C196216189 @default.
- W2016207987 hasConcept C2524010 @default.
- W2016207987 hasConcept C2776036281 @default.
- W2016207987 hasConcept C33923547 @default.
- W2016207987 hasConcept C41008148 @default.
- W2016207987 hasConcept C47432892 @default.
- W2016207987 hasConceptScore W2016207987C11413529 @default.
- W2016207987 hasConceptScore W2016207987C153180895 @default.
- W2016207987 hasConceptScore W2016207987C154945302 @default.
- W2016207987 hasConceptScore W2016207987C159078339 @default.
- W2016207987 hasConceptScore W2016207987C163294075 @default.
- W2016207987 hasConceptScore W2016207987C196216189 @default.
- W2016207987 hasConceptScore W2016207987C2524010 @default.
- W2016207987 hasConceptScore W2016207987C2776036281 @default.
- W2016207987 hasConceptScore W2016207987C33923547 @default.
- W2016207987 hasConceptScore W2016207987C41008148 @default.
- W2016207987 hasConceptScore W2016207987C47432892 @default.
- W2016207987 hasLocation W20162079871 @default.
- W2016207987 hasOpenAccess W2016207987 @default.
- W2016207987 hasPrimaryLocation W20162079871 @default.
- W2016207987 hasRelatedWork W1970282422 @default.
- W2016207987 hasRelatedWork W1971311408 @default.
- W2016207987 hasRelatedWork W1991992234 @default.
- W2016207987 hasRelatedWork W2010927393 @default.
- W2016207987 hasRelatedWork W2016778695 @default.
- W2016207987 hasRelatedWork W2024444568 @default.
- W2016207987 hasRelatedWork W2057583272 @default.
- W2016207987 hasRelatedWork W2086331834 @default.
- W2016207987 hasRelatedWork W2117623935 @default.
- W2016207987 hasRelatedWork W2158588744 @default.
- W2016207987 hasRelatedWork W2351817080 @default.
- W2016207987 hasRelatedWork W2352121517 @default.
- W2016207987 hasRelatedWork W2380589677 @default.
- W2016207987 hasRelatedWork W2382253782 @default.
- W2016207987 hasRelatedWork W2384104037 @default.
- W2016207987 hasRelatedWork W2386202621 @default.
- W2016207987 hasRelatedWork W2388018018 @default.
- W2016207987 hasRelatedWork W2580286998 @default.
- W2016207987 hasRelatedWork W2786112281 @default.
- W2016207987 hasRelatedWork W3014862815 @default.
- W2016207987 isParatext "false" @default.
- W2016207987 isRetracted "false" @default.
- W2016207987 magId "2016207987" @default.
- W2016207987 workType "article" @default.