Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016208403> ?p ?o ?g. }
- W2016208403 endingPage "134" @default.
- W2016208403 startingPage "95" @default.
- W2016208403 abstract "The purpose of this paper is to analyze diapycnal mixing induced by the breaking of an internal gravity wave — the primary wave — either standing or propagating. To achieve this aim we apply two different methods. The first method consists of a direct estimate of vertical eddy diffusion from particle dispersion while the second method relies upon potential energy budgets [Winters, K.B., Lombard, P.N., Riley, J.J., D’Asaro, E.A., 1995. J. Fluid Mech. 289, 115–128; Winters, K.B., D’Asaro, E.A., 1996. J. Fluid Mech. 317, 179–193]. The primary wave we consider is of small amplitude and is statically stable, a case for which the breaking process involves two-dimensional instabilities. The dynamics of the waves have been previously analyzed by means of two-dimensional direct numerical simulations [Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1995. J. Fluid Mech. 285, 265–301; Bouruet-Aubertot, P., Sommeria, J., Staquet, C., 1996. Dyn. Atmos. Oceans 29, 41–63; Koudella, C., Staquet, C., 1998. In: Davis, P. (Ed.), Proceedings of the IMA Conference on Mixing and Dispersion on Stably-stratified Flows, Dundee, September 1996. IMA Publication]. High resolution three-dimensional calculations of the same wave are also reported here [Koudella, C., 1999]. A local estimate of mixing is first inferred from the time evolution of sets of particles released in the flow during the breaking regime. We show that, after an early evolution dominated by shear effects, a diffusion law is reached and the dispersion coefficient is fairly independent of the initial seeding location of the particles in the flow. The eddy diffusion coefficient, K, is then estimated from the diapycnal diffusive flux. A good agreement with the value inferred from particle dispersion is obtained. This finding is of particular interest regarding the interpretation of in situ estimates of K inferred either from tracer dispersion or from microstructure measurements. Computation of the Cox number, equal to the ratio of eddy diffusivity to molecular diffusivity, shows that the Cox number varies within the interval [9, 262], which corresponds to the range of vertical eddy diffusivity measured in the interior of the ocean. The Cox number is found to depend on the turbulent Froude number squared. We show eventually that mixing results in a weak distortion of the initial density profile and we relate this result to observations made at small scale in the ocean. Comparisons between the analysis of the two-dimensional and high resolution (2563) three-dimensional direct numerical simulations of the primary wave were also conducted. We show that the energetics and the amount of mixing are very close when the primary wave is of small amplitude. This results from the fact that, for a statically stable wave, the dynamics of the initially two-dimensional primary wave remains mostly two-dimensional even after the onset of wavebreaking." @default.
- W2016208403 created "2016-06-24" @default.
- W2016208403 creator A5032351218 @default.
- W2016208403 creator A5047160351 @default.
- W2016208403 creator A5087344696 @default.
- W2016208403 creator A5089569876 @default.
- W2016208403 date "2001-01-01" @default.
- W2016208403 modified "2023-10-16" @default.
- W2016208403 title "Particle dispersion and mixing induced by breaking internal gravity waves" @default.
- W2016208403 cites W119094600 @default.
- W2016208403 cites W1963685925 @default.
- W2016208403 cites W1968576670 @default.
- W2016208403 cites W1972686412 @default.
- W2016208403 cites W1975534503 @default.
- W2016208403 cites W1978253701 @default.
- W2016208403 cites W1990610533 @default.
- W2016208403 cites W1998140809 @default.
- W2016208403 cites W2001348201 @default.
- W2016208403 cites W2016286269 @default.
- W2016208403 cites W2029687741 @default.
- W2016208403 cites W2031127053 @default.
- W2016208403 cites W2040874621 @default.
- W2016208403 cites W2043947285 @default.
- W2016208403 cites W2046719969 @default.
- W2016208403 cites W2048374194 @default.
- W2016208403 cites W2051604588 @default.
- W2016208403 cites W2059123622 @default.
- W2016208403 cites W2067122195 @default.
- W2016208403 cites W2068204246 @default.
- W2016208403 cites W2081033705 @default.
- W2016208403 cites W2090354898 @default.
- W2016208403 cites W2092149963 @default.
- W2016208403 cites W2095876969 @default.
- W2016208403 cites W2114364153 @default.
- W2016208403 cites W2119699767 @default.
- W2016208403 cites W2124405355 @default.
- W2016208403 cites W2124988479 @default.
- W2016208403 cites W2134743305 @default.
- W2016208403 cites W2142093964 @default.
- W2016208403 cites W2159835747 @default.
- W2016208403 cites W2162870748 @default.
- W2016208403 cites W2163802086 @default.
- W2016208403 cites W2176346484 @default.
- W2016208403 cites W2232626347 @default.
- W2016208403 cites W4253434726 @default.
- W2016208403 cites W4298060601 @default.
- W2016208403 cites W2010267699 @default.
- W2016208403 doi "https://doi.org/10.1016/s0377-0265(00)00056-7" @default.
- W2016208403 hasPublicationYear "2001" @default.
- W2016208403 type Work @default.
- W2016208403 sameAs 2016208403 @default.
- W2016208403 citedByCount "22" @default.
- W2016208403 countsByYear W20162084032012 @default.
- W2016208403 countsByYear W20162084032013 @default.
- W2016208403 countsByYear W20162084032015 @default.
- W2016208403 countsByYear W20162084032018 @default.
- W2016208403 countsByYear W20162084032021 @default.
- W2016208403 crossrefType "journal-article" @default.
- W2016208403 hasAuthorship W2016208403A5032351218 @default.
- W2016208403 hasAuthorship W2016208403A5047160351 @default.
- W2016208403 hasAuthorship W2016208403A5087344696 @default.
- W2016208403 hasAuthorship W2016208403A5089569876 @default.
- W2016208403 hasBestOaLocation W20162084032 @default.
- W2016208403 hasConcept C104196234 @default.
- W2016208403 hasConcept C120665830 @default.
- W2016208403 hasConcept C121332964 @default.
- W2016208403 hasConcept C138777275 @default.
- W2016208403 hasConcept C145290371 @default.
- W2016208403 hasConcept C146864707 @default.
- W2016208403 hasConcept C169596890 @default.
- W2016208403 hasConcept C177562468 @default.
- W2016208403 hasConcept C180205008 @default.
- W2016208403 hasConcept C185975314 @default.
- W2016208403 hasConcept C196558001 @default.
- W2016208403 hasConcept C207821765 @default.
- W2016208403 hasConcept C44886760 @default.
- W2016208403 hasConcept C57879066 @default.
- W2016208403 hasConcept C62520636 @default.
- W2016208403 hasConcept C69357855 @default.
- W2016208403 hasConcept C97355855 @default.
- W2016208403 hasConceptScore W2016208403C104196234 @default.
- W2016208403 hasConceptScore W2016208403C120665830 @default.
- W2016208403 hasConceptScore W2016208403C121332964 @default.
- W2016208403 hasConceptScore W2016208403C138777275 @default.
- W2016208403 hasConceptScore W2016208403C145290371 @default.
- W2016208403 hasConceptScore W2016208403C146864707 @default.
- W2016208403 hasConceptScore W2016208403C169596890 @default.
- W2016208403 hasConceptScore W2016208403C177562468 @default.
- W2016208403 hasConceptScore W2016208403C180205008 @default.
- W2016208403 hasConceptScore W2016208403C185975314 @default.
- W2016208403 hasConceptScore W2016208403C196558001 @default.
- W2016208403 hasConceptScore W2016208403C207821765 @default.
- W2016208403 hasConceptScore W2016208403C44886760 @default.
- W2016208403 hasConceptScore W2016208403C57879066 @default.
- W2016208403 hasConceptScore W2016208403C62520636 @default.
- W2016208403 hasConceptScore W2016208403C69357855 @default.
- W2016208403 hasConceptScore W2016208403C97355855 @default.
- W2016208403 hasIssue "2" @default.