Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016209933> ?p ?o ?g. }
- W2016209933 endingPage "286" @default.
- W2016209933 startingPage "278" @default.
- W2016209933 abstract "Heterotrimeric G proteins (αβγ) and Ras proteins are activated by cell-surface receptors that sense extracellular signals. Both sets of proteins were traditionally thought to be constrained to the plasma membrane and some intracellular membranes. Live-cell-imaging experiments have now shown that these proteins are mobile inside a cell, shuttling continually between the plasma membrane and intracellular membranes in the basal state, maintaining these proteins in dynamic equilibrium in different membrane compartments. Furthermore, on receptor activation, a family of G protein βγ subunits translocates rapidly and reversibly to the Golgi and endoplasmic reticulum enabling direct communication between the extracellular signal and intracellular membranes. A member of the Ras family has similarly been shown to translocate on activation. Although the impact of this unexpected intracellular movement of signaling proteins on cell physiology is likely to be distinct, there are striking similarities in the properties of these two families of signal-transducing proteins. Heterotrimeric G proteins (αβγ) and Ras proteins are activated by cell-surface receptors that sense extracellular signals. Both sets of proteins were traditionally thought to be constrained to the plasma membrane and some intracellular membranes. Live-cell-imaging experiments have now shown that these proteins are mobile inside a cell, shuttling continually between the plasma membrane and intracellular membranes in the basal state, maintaining these proteins in dynamic equilibrium in different membrane compartments. Furthermore, on receptor activation, a family of G protein βγ subunits translocates rapidly and reversibly to the Golgi and endoplasmic reticulum enabling direct communication between the extracellular signal and intracellular membranes. A member of the Ras family has similarly been shown to translocate on activation. Although the impact of this unexpected intracellular movement of signaling proteins on cell physiology is likely to be distinct, there are striking similarities in the properties of these two families of signal-transducing proteins. the process that leads to movement of molecules inside the cell from a region of high concentration to a region of low concentration by energy-independent random molecular motion. a protein that fluoresces in living cells when excited with light of a specific wavelength and can be genetically tagged to any protein of interest to study their behavior by fluorescence imaging. Availability of spectrally distinct proteins for tagging enables simultaneous imaging of many cellular proteins at the same time. fluorescence recovery after photobleaching; a technique in which the mobility of a FP-tagged protein of interest is studied inside a cell. It is performed by bleaching the FP in a selected part of a cell and then monitoring the recovery in the bleached region. an intracellular membrane organelle localized to the perinuclear region and composed of membrane stacks. It is involved in the post-translational processing of proteins and serves as a site of packaging and trafficking of secretory and plasma-membrane-bound molecules inside a cell. techniques to image dynamics of protein movement and localization in living cells. It is performed by genetically tagging proteins under study with FPs such as green FP (GFP) and then studying them inside a living cell in their actual milieu. depalmitoylation–palmitoylation events that lead to the removal and reattachment of a 16-carbon palmitoyl modification to various proteins. an optical process in which a bleached FP can be reactivated using light of a specific wavelength. Photoactivation of a protein of interest tagged with a photoactivatable FP such as Dronpa can enable migration of the protein to be studied. post-translational addition of an isoprenoid lipid group such as the 15C farnesyl or the 20C geranylgeranyl at the C-terminal end of a protein. Presence of a -CAAX motif at the C-terminal sequence determines prenylation. The ‘X’ amino acid determines whether the cysteine within the CAAX box is farnesylated or geranylgeranylated. If X is serine, methionine or glutamine it leads to farnesylation of proteins and if it is leucine or phenylalanine the protein is modified with geranylgeranyl. bidirectional movement of proteins between two target sites inside a living cell. relocalization of proteins from one part of the cell to another part, usually as a result of a stimulation or perturbation. movement of molecules from the Golgi to the plasma membrane or cell exterior through small lipid carriers called vesicles. These lipid vesicles require the cytoskeleton for their movement." @default.
- W2016209933 created "2016-06-24" @default.
- W2016209933 creator A5074959981 @default.
- W2016209933 creator A5075572452 @default.
- W2016209933 creator A5089302046 @default.
- W2016209933 date "2009-06-01" @default.
- W2016209933 modified "2023-10-18" @default.
- W2016209933 title "Shuttling and translocation of heterotrimeric G proteins and Ras" @default.
- W2016209933 cites W1499914765 @default.
- W2016209933 cites W1510167292 @default.
- W2016209933 cites W1535774104 @default.
- W2016209933 cites W1549892775 @default.
- W2016209933 cites W1554671555 @default.
- W2016209933 cites W1609540500 @default.
- W2016209933 cites W1681309649 @default.
- W2016209933 cites W1946415498 @default.
- W2016209933 cites W1964181591 @default.
- W2016209933 cites W1964871401 @default.
- W2016209933 cites W1966694736 @default.
- W2016209933 cites W1968682237 @default.
- W2016209933 cites W1971626991 @default.
- W2016209933 cites W1972416441 @default.
- W2016209933 cites W1973470243 @default.
- W2016209933 cites W1975823810 @default.
- W2016209933 cites W1977375333 @default.
- W2016209933 cites W1983203888 @default.
- W2016209933 cites W1986827801 @default.
- W2016209933 cites W1988848092 @default.
- W2016209933 cites W1990689067 @default.
- W2016209933 cites W1994363140 @default.
- W2016209933 cites W2006090120 @default.
- W2016209933 cites W2006740795 @default.
- W2016209933 cites W2008812258 @default.
- W2016209933 cites W2009696224 @default.
- W2016209933 cites W2010207338 @default.
- W2016209933 cites W2013292648 @default.
- W2016209933 cites W2016745915 @default.
- W2016209933 cites W2016983896 @default.
- W2016209933 cites W2017451004 @default.
- W2016209933 cites W2018821302 @default.
- W2016209933 cites W2021509333 @default.
- W2016209933 cites W2021951468 @default.
- W2016209933 cites W2026565430 @default.
- W2016209933 cites W2028543740 @default.
- W2016209933 cites W2028645925 @default.
- W2016209933 cites W2029442269 @default.
- W2016209933 cites W2032937845 @default.
- W2016209933 cites W2034512365 @default.
- W2016209933 cites W2037300971 @default.
- W2016209933 cites W2038206466 @default.
- W2016209933 cites W2040478551 @default.
- W2016209933 cites W2041505788 @default.
- W2016209933 cites W2044775506 @default.
- W2016209933 cites W2044835236 @default.
- W2016209933 cites W2044850263 @default.
- W2016209933 cites W2045006795 @default.
- W2016209933 cites W2045508653 @default.
- W2016209933 cites W2046912635 @default.
- W2016209933 cites W2049768914 @default.
- W2016209933 cites W2051260684 @default.
- W2016209933 cites W2052149638 @default.
- W2016209933 cites W2053279473 @default.
- W2016209933 cites W2055006835 @default.
- W2016209933 cites W2055285595 @default.
- W2016209933 cites W2056768791 @default.
- W2016209933 cites W2058488549 @default.
- W2016209933 cites W2059659204 @default.
- W2016209933 cites W2063379302 @default.
- W2016209933 cites W2066447320 @default.
- W2016209933 cites W2069800089 @default.
- W2016209933 cites W2070618535 @default.
- W2016209933 cites W2072831370 @default.
- W2016209933 cites W2073040909 @default.
- W2016209933 cites W2087060337 @default.
- W2016209933 cites W2087735428 @default.
- W2016209933 cites W2090576216 @default.
- W2016209933 cites W2092823346 @default.
- W2016209933 cites W2100104320 @default.
- W2016209933 cites W2101436175 @default.
- W2016209933 cites W2114872697 @default.
- W2016209933 cites W2118561918 @default.
- W2016209933 cites W2128685320 @default.
- W2016209933 cites W2128806251 @default.
- W2016209933 cites W2135970284 @default.
- W2016209933 cites W2140170107 @default.
- W2016209933 cites W2143544378 @default.
- W2016209933 cites W2151862262 @default.
- W2016209933 cites W2152189564 @default.
- W2016209933 cites W2156511132 @default.
- W2016209933 cites W2168808956 @default.
- W2016209933 cites W2171146188 @default.
- W2016209933 doi "https://doi.org/10.1016/j.tips.2009.04.001" @default.
- W2016209933 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3097116" @default.
- W2016209933 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19427041" @default.
- W2016209933 hasPublicationYear "2009" @default.
- W2016209933 type Work @default.
- W2016209933 sameAs 2016209933 @default.
- W2016209933 citedByCount "47" @default.