Matches in SemOpenAlex for { <https://semopenalex.org/work/W201622579> ?p ?o ?g. }
- W201622579 abstract "Business processes (industries, administration, hospitals, etc.) become nowadays more and more complex and it is difficult to have a complete understanding of them. The goal of the thesis is to show that machine learning techniques can be used successfully for understanding a process on the basis of data, by means of clustering process related measures, induction of predictive models, and process discovery. This goal is achieved by means of two approaches: (i) classify process cases (e.g. patients) into logistic homogeneous groups and induce models that assign a new case to a logistic group and (ii) discover the underlying process. By doing so, the process can be modelled, analysed and improved. Another benefit is that systems can be designed more efficiently to support and control the processes more effectively. We target on the analysis of two sorts of data, namely aggregated data and sequence data. Aggregated data result from performing some transformations on raw data, focusing on a specific concept, that is not yet explicit in the raw data. This aggregation is similar to feature construction, as used in the machine learning domain. In this thesis, aggregated data are the variables that result from operationalizing the concept of process complexity. These aggregated data are used to develop logistic homogeneous clusters. This means that elements in different clusters will differ from the routing complexity point of view. We show that developing homogeneous clusters for a given process is relevant in connection with the induction of predictive models. Namely, the routing in the process can be predicted using the logistic clusters. We do not aim to provide concrete directives for building control systems, rather our models should be taken as indicatives of their potential. Sequence data describe the sequence of activities over time in a process execution. They are recorded in a process log, during the execution of the process steps. Due to exceptions, missing or incomplete registration and errors, the data can be noisy. By using sequence data, the goal is to derive a model explaining the events recorded. In situations without noise and sufficient information, we provide a method for building a process model from the process log. Moreover, we discuss the class of models for which it is possible to accurately rediscover the model by looking at the process log. Machine learning techniques are especially useful when discovering a process model from noisy sequence data. Such a model can be further analyzed and eventually improved, but these issues are beyond the scope of this thesis. Through the applications of our proposed methods on different data (e.g. hospital data, workflow data and administrative governmental data), we have shown that our methods result in useful models and subsequently can be used in practice. We applied our methods on data-sets for which (i) it was possible to aggregate relevant information and (ii) sequence data were available." @default.
- W201622579 created "2016-06-24" @default.
- W201622579 creator A5020403998 @default.
- W201622579 date "2003-01-01" @default.
- W201622579 modified "2023-09-25" @default.
- W201622579 title "A machine learning approach to understand business processes" @default.
- W201622579 cites W139661254 @default.
- W201622579 cites W1480003044 @default.
- W201622579 cites W1483014049 @default.
- W201622579 cites W1484369417 @default.
- W201622579 cites W1499822463 @default.
- W201622579 cites W1508806467 @default.
- W201622579 cites W1517258290 @default.
- W201622579 cites W1527532036 @default.
- W201622579 cites W1549485114 @default.
- W201622579 cites W1551214605 @default.
- W201622579 cites W1560094311 @default.
- W201622579 cites W1560793393 @default.
- W201622579 cites W1561267729 @default.
- W201622579 cites W1600254473 @default.
- W201622579 cites W1670263352 @default.
- W201622579 cites W1861703862 @default.
- W201622579 cites W189242244 @default.
- W201622579 cites W1897651547 @default.
- W201622579 cites W1981691216 @default.
- W201622579 cites W1996109622 @default.
- W201622579 cites W2004865374 @default.
- W201622579 cites W2030668207 @default.
- W201622579 cites W2031846435 @default.
- W201622579 cites W2041893234 @default.
- W201622579 cites W2061079066 @default.
- W201622579 cites W2068377428 @default.
- W201622579 cites W2076809324 @default.
- W201622579 cites W2083780116 @default.
- W201622579 cites W2098250644 @default.
- W201622579 cites W2101665709 @default.
- W201622579 cites W2105102860 @default.
- W201622579 cites W2113065307 @default.
- W201622579 cites W2119315254 @default.
- W201622579 cites W2125034691 @default.
- W201622579 cites W2125055259 @default.
- W201622579 cites W2127300475 @default.
- W201622579 cites W2129466958 @default.
- W201622579 cites W2133104744 @default.
- W201622579 cites W2134937538 @default.
- W201622579 cites W2136000097 @default.
- W201622579 cites W2144246387 @default.
- W201622579 cites W2149706766 @default.
- W201622579 cites W2154231540 @default.
- W201622579 cites W2155550591 @default.
- W201622579 cites W2162868766 @default.
- W201622579 cites W2170155158 @default.
- W201622579 cites W2295492805 @default.
- W201622579 cites W2788972904 @default.
- W201622579 cites W2798905789 @default.
- W201622579 cites W2808309648 @default.
- W201622579 cites W2810816112 @default.
- W201622579 cites W2992065732 @default.
- W201622579 cites W3122254401 @default.
- W201622579 cites W3135943643 @default.
- W201622579 cites W2186581259 @default.
- W201622579 cites W2568081765 @default.
- W201622579 doi "https://doi.org/10.6100/ir568241" @default.
- W201622579 hasPublicationYear "2003" @default.
- W201622579 type Work @default.
- W201622579 sameAs 201622579 @default.
- W201622579 citedByCount "11" @default.
- W201622579 countsByYear W2016225792012 @default.
- W201622579 countsByYear W2016225792013 @default.
- W201622579 countsByYear W2016225792014 @default.
- W201622579 countsByYear W2016225792018 @default.
- W201622579 crossrefType "journal-article" @default.
- W201622579 hasAuthorship W201622579A5020403998 @default.
- W201622579 hasConcept C111472728 @default.
- W201622579 hasConcept C111919701 @default.
- W201622579 hasConcept C119857082 @default.
- W201622579 hasConcept C124101348 @default.
- W201622579 hasConcept C124670913 @default.
- W201622579 hasConcept C127413603 @default.
- W201622579 hasConcept C132964779 @default.
- W201622579 hasConcept C138885662 @default.
- W201622579 hasConcept C154945302 @default.
- W201622579 hasConcept C174998907 @default.
- W201622579 hasConcept C199360897 @default.
- W201622579 hasConcept C207505557 @default.
- W201622579 hasConcept C21547014 @default.
- W201622579 hasConcept C41008148 @default.
- W201622579 hasConcept C73555534 @default.
- W201622579 hasConcept C80309976 @default.
- W201622579 hasConcept C85345410 @default.
- W201622579 hasConcept C93453677 @default.
- W201622579 hasConcept C9354725 @default.
- W201622579 hasConcept C98045186 @default.
- W201622579 hasConceptScore W201622579C111472728 @default.
- W201622579 hasConceptScore W201622579C111919701 @default.
- W201622579 hasConceptScore W201622579C119857082 @default.
- W201622579 hasConceptScore W201622579C124101348 @default.
- W201622579 hasConceptScore W201622579C124670913 @default.
- W201622579 hasConceptScore W201622579C127413603 @default.
- W201622579 hasConceptScore W201622579C132964779 @default.