Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016226316> ?p ?o ?g. }
- W2016226316 abstract "Patient response to chemotherapy for ovarian cancer is extremely heterogeneous and there are currently no tools to aid the prediction of sensitivity or resistance to chemotherapy and allow treatment stratification. Such a tool could greatly improve patient survival by identifying the most appropriate treatment on a patient-specific basis. PubMed was searched for studies predicting response or resistance to chemotherapy using gene expression measurements of human tissue in ovarian cancer. 42 studies were identified and both the data collection and modelling methods were compared. The majority of studies utilised fresh-frozen or formalin-fixed paraffin-embedded tissue. Modelling techniques varied, the most popular being Cox proportional hazards regression and hierarchical clustering which were used by 17 and 11 studies respectively. The gene signatures identified by the various studies were not consistent, with very few genes being identified by more than two studies. Patient cohorts were often noted to be heterogeneous with respect to chemotherapy treatment undergone by patients. A clinically applicable gene signature capable of predicting patient response to chemotherapy has not yet been identified. Research into a predictive, as opposed to prognostic, model could be highly beneficial and aid the identification of the most suitable treatment for patients." @default.
- W2016226316 created "2016-06-24" @default.
- W2016226316 creator A5013227537 @default.
- W2016226316 creator A5014188852 @default.
- W2016226316 creator A5086506904 @default.
- W2016226316 date "2015-03-11" @default.
- W2016226316 modified "2023-10-16" @default.
- W2016226316 title "Prediction of resistance to chemotherapy in ovarian cancer: a systematic review" @default.
- W2016226316 cites W1509500531 @default.
- W2016226316 cites W1525054294 @default.
- W2016226316 cites W1536513511 @default.
- W2016226316 cites W1694119819 @default.
- W2016226316 cites W1954448220 @default.
- W2016226316 cites W1965766554 @default.
- W2016226316 cites W1967781801 @default.
- W2016226316 cites W1969016700 @default.
- W2016226316 cites W1969298821 @default.
- W2016226316 cites W1979816698 @default.
- W2016226316 cites W1984214747 @default.
- W2016226316 cites W1985299015 @default.
- W2016226316 cites W1993086521 @default.
- W2016226316 cites W1993865220 @default.
- W2016226316 cites W1995242599 @default.
- W2016226316 cites W1995911541 @default.
- W2016226316 cites W1996989652 @default.
- W2016226316 cites W1999555459 @default.
- W2016226316 cites W1999659639 @default.
- W2016226316 cites W2009514656 @default.
- W2016226316 cites W2009978277 @default.
- W2016226316 cites W2012695246 @default.
- W2016226316 cites W2018044006 @default.
- W2016226316 cites W2029660804 @default.
- W2016226316 cites W2030328721 @default.
- W2016226316 cites W2034269086 @default.
- W2016226316 cites W2049306821 @default.
- W2016226316 cites W2056475199 @default.
- W2016226316 cites W2062289724 @default.
- W2016226316 cites W2071646545 @default.
- W2016226316 cites W2078344435 @default.
- W2016226316 cites W2081287664 @default.
- W2016226316 cites W2081635337 @default.
- W2016226316 cites W2082346958 @default.
- W2016226316 cites W2086430651 @default.
- W2016226316 cites W2095264870 @default.
- W2016226316 cites W2097777938 @default.
- W2016226316 cites W2098421558 @default.
- W2016226316 cites W2099201986 @default.
- W2016226316 cites W2099826569 @default.
- W2016226316 cites W2104989537 @default.
- W2016226316 cites W2106980005 @default.
- W2016226316 cites W2107638293 @default.
- W2016226316 cites W2107919129 @default.
- W2016226316 cites W2109449896 @default.
- W2016226316 cites W2110065044 @default.
- W2016226316 cites W2111803165 @default.
- W2016226316 cites W2116704045 @default.
- W2016226316 cites W2117058881 @default.
- W2016226316 cites W2121677423 @default.
- W2016226316 cites W2123664981 @default.
- W2016226316 cites W2124913959 @default.
- W2016226316 cites W2128160790 @default.
- W2016226316 cites W2128215249 @default.
- W2016226316 cites W2129907662 @default.
- W2016226316 cites W2130748155 @default.
- W2016226316 cites W2133932878 @default.
- W2016226316 cites W2134785517 @default.
- W2016226316 cites W2137525633 @default.
- W2016226316 cites W2142240220 @default.
- W2016226316 cites W2147539392 @default.
- W2016226316 cites W2147754310 @default.
- W2016226316 cites W2148408457 @default.
- W2016226316 cites W2149391237 @default.
- W2016226316 cites W2153682492 @default.
- W2016226316 cites W2156691266 @default.
- W2016226316 cites W2157630129 @default.
- W2016226316 cites W2158006786 @default.
- W2016226316 cites W2158289485 @default.
- W2016226316 cites W2162115413 @default.
- W2016226316 cites W2170454539 @default.
- W2016226316 cites W2310034942 @default.
- W2016226316 doi "https://doi.org/10.1186/s12885-015-1101-8" @default.
- W2016226316 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4371880" @default.
- W2016226316 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25886033" @default.
- W2016226316 hasPublicationYear "2015" @default.
- W2016226316 type Work @default.
- W2016226316 sameAs 2016226316 @default.
- W2016226316 citedByCount "65" @default.
- W2016226316 countsByYear W20162263162015 @default.
- W2016226316 countsByYear W20162263162016 @default.
- W2016226316 countsByYear W20162263162017 @default.
- W2016226316 countsByYear W20162263162018 @default.
- W2016226316 countsByYear W20162263162019 @default.
- W2016226316 countsByYear W20162263162020 @default.
- W2016226316 countsByYear W20162263162021 @default.
- W2016226316 countsByYear W20162263162022 @default.
- W2016226316 countsByYear W20162263162023 @default.
- W2016226316 crossrefType "journal-article" @default.
- W2016226316 hasAuthorship W2016226316A5013227537 @default.
- W2016226316 hasAuthorship W2016226316A5014188852 @default.
- W2016226316 hasAuthorship W2016226316A5086506904 @default.