Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016227265> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W2016227265 abstract "Abstract Subsea processing covers different functions: flow boosting, gas-liquid separation, gas-oil-water (and sand) separation, and gas compression. These functions offer increasing opportunities along with increasing levels of complexity, and timeframe. Subsea processing offers new possibilities for flow assurance and production practices. Accordingly, this will modify field architecture, as we know it. All components in the chain from subsea to surface will be affected: manifolds, flowlines, subsea templates, and risers. Noticeably, this will also affect the service and construction industry that will have to adapt to these new requirements. The paper will describe the flow assurance options made available with flow boosting, gas-liquid, gas-oil-water separation and screen current flowlines and risers options to identify how they are likely to evolve to meet the requirements of subsea processing in ultra-deepwater. Introduction For oil producing fields, subsea processing can be classified primarily into flow boosting, gas-liquid separation, and gas-oil-water separation. Subsea compression is applicable primarily to gas producing fields, and at this juncture considered for relatively shallow water projects and not for deepwater or ultra-deepwater. This paper concentrates on ultra-deepwater and therefore subsea compression is not developed further, even though production of gas at elevated pressure can be beneficial as evidenced by Compressed Natural Gas (CNG) concepts. This paper successively includes a review of oil production subsea processing, a typical ultra-deepwater case, and how the available technology of risers and flowlines covers the needs of these new features. Subsea Processing Oil production requires heavy topsides production equipment. This equipment includes the oil production trains, the associated gas compressors for gaslift and gas compression, the water injection system, power generation systems, storage, utilities, and living quarters. The combined weight of all these systems is quite large (typically 25 000T for a 200 000 BOPD FPU). The impact of subsea processing on the size of the topsides is limited and the benefit is not to be gained from a drastic reduction of topsides but from additional production. Additional production can be achieved through two main technologies:Flow boosting: increase of pressure of the oil-and-gas wellfluid by a multiphase pumpSeparation of the gas from the liquid phase (water and oil) and pumping in liquid phase of the well fluid A typical oil production train includes three separators in series. The pressure stages are optimized to meet the oil specification such as the Reid Vapor Pressure (RVP). A typical high pressure separator operates in the range of 500 psi (35 bar). As water depth increases, the benefit of subsea processing increases for a given tubing size (usually 5-1/2??)." @default.
- W2016227265 created "2016-06-24" @default.
- W2016227265 creator A5010315460 @default.
- W2016227265 creator A5052688870 @default.
- W2016227265 date "2008-05-05" @default.
- W2016227265 modified "2023-09-25" @default.
- W2016227265 title "How Subsea Processing Impacts Flow Assurance and Field Architecture in Ultra Deepwater" @default.
- W2016227265 doi "https://doi.org/10.4043/19262-ms" @default.
- W2016227265 hasPublicationYear "2008" @default.
- W2016227265 type Work @default.
- W2016227265 sameAs 2016227265 @default.
- W2016227265 citedByCount "1" @default.
- W2016227265 countsByYear W20162272652015 @default.
- W2016227265 crossrefType "proceedings-article" @default.
- W2016227265 hasAuthorship W2016227265A5010315460 @default.
- W2016227265 hasAuthorship W2016227265A5052688870 @default.
- W2016227265 hasConcept C113740612 @default.
- W2016227265 hasConcept C127413603 @default.
- W2016227265 hasConcept C178790620 @default.
- W2016227265 hasConcept C185592680 @default.
- W2016227265 hasConcept C199104240 @default.
- W2016227265 hasConcept C2777737062 @default.
- W2016227265 hasConcept C2777955874 @default.
- W2016227265 hasConcept C2781060337 @default.
- W2016227265 hasConcept C39432304 @default.
- W2016227265 hasConcept C548081761 @default.
- W2016227265 hasConcept C59427239 @default.
- W2016227265 hasConcept C68189081 @default.
- W2016227265 hasConcept C78762247 @default.
- W2016227265 hasConceptScore W2016227265C113740612 @default.
- W2016227265 hasConceptScore W2016227265C127413603 @default.
- W2016227265 hasConceptScore W2016227265C178790620 @default.
- W2016227265 hasConceptScore W2016227265C185592680 @default.
- W2016227265 hasConceptScore W2016227265C199104240 @default.
- W2016227265 hasConceptScore W2016227265C2777737062 @default.
- W2016227265 hasConceptScore W2016227265C2777955874 @default.
- W2016227265 hasConceptScore W2016227265C2781060337 @default.
- W2016227265 hasConceptScore W2016227265C39432304 @default.
- W2016227265 hasConceptScore W2016227265C548081761 @default.
- W2016227265 hasConceptScore W2016227265C59427239 @default.
- W2016227265 hasConceptScore W2016227265C68189081 @default.
- W2016227265 hasConceptScore W2016227265C78762247 @default.
- W2016227265 hasLocation W20162272651 @default.
- W2016227265 hasOpenAccess W2016227265 @default.
- W2016227265 hasPrimaryLocation W20162272651 @default.
- W2016227265 hasRelatedWork W1988099631 @default.
- W2016227265 hasRelatedWork W2015775167 @default.
- W2016227265 hasRelatedWork W2023450637 @default.
- W2016227265 hasRelatedWork W2040994949 @default.
- W2016227265 hasRelatedWork W2052556310 @default.
- W2016227265 hasRelatedWork W2065898117 @default.
- W2016227265 hasRelatedWork W2802526632 @default.
- W2016227265 hasRelatedWork W3021674723 @default.
- W2016227265 hasRelatedWork W4235964749 @default.
- W2016227265 hasRelatedWork W2602216524 @default.
- W2016227265 isParatext "false" @default.
- W2016227265 isRetracted "false" @default.
- W2016227265 magId "2016227265" @default.
- W2016227265 workType "article" @default.