Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016261638> ?p ?o ?g. }
- W2016261638 endingPage "133" @default.
- W2016261638 startingPage "121" @default.
- W2016261638 abstract "A suite of mantle-wedge amphibole + phlogopite-bearing spinel peridotite xenoliths in Plio-Pleistocene alkali basalts from Southern Patagonia (Gobernador Gregores, Santa Cruz Province, Argentina) contains carbonic fluid inclusions, glass and carbonate in several textural domains. Here we present a microstructural and fluid inclusion study showing that fluid (corresponding to pure CO2) and glass post-date the hydrous mantle assemblage and formed soon before and/or during xenolith entrainement in the host alkali basalt. The high densities preserved by a number of CO2 inclusions indicate that fluid infiltration took place at mantle depths. The low densities pertaining to the majority of analyzed fluid inclusions derive from inclusion re-equilibration during xenolith ascent. Glass occurs in reaction haloes around clinopyroxene, amphibole and phlogopite, where it hosts microlites of new pyroxene, olivine and locally carbonate. Glass veins cut the mantle minerals and locally contain primary carbonate. Glasses vary widely in composition depending on the textural domains and attain Si- and alkali-rich compositions (SiO2 = 47.0–68.3 wt.%; Na2O + K2O = 5.8–12.2 wt.%). Incompatible trace element patterns of glasses in anhydrous xenoliths are closely similar to those of the host alkali basalts, whereas the compositions of interstitial and vein glasses in the hydrous xenoliths indicate that a compositional control has been exerted by the local mineral assemblage (mainly amphibole). The δ18O values of carbonate from the glass pockets and veins in the xenoliths, as well as of carbonate globules and amygdales in the host basalts are in the range 19.62 to 21.04‰. Corresponding δ13C values are − 9.25 to − 10.12‰ and − 7.59 to − 9.32‰, respectively. These values are very different from those of primary carbonatites and the δ18O values clearly exceed those expected for minerals and glasses from mantle assemblages. The similarity of isotopic ratios of carbonates from both xenoliths and host lavas and their shift towards low δ13C and high δ18O values may be the result of basalt-peridotite interaction during ascent of the mantle xenoliths. Our study points to a close relationship between the infiltration of carbonic fluid together with fractions of the host alkali basalt, and melting of hydrous peridotite-forming minerals. Assuming an initial average content of 1.5–2 wt.% CO2 in the primary alkaline melt and considering that the dissolved amounts of CO2 and H2O in such a melt at 400 MPa can be in the order of 0.3 wt.% and 3.5% respectively, approximately 75 to 50% of the total carbon dioxide load was released by the uprising host magma. This process led to infiltration and entrapment of high-density CO2 inclusions in the GG mantle rocks, to hydrous phase breakdown and to carbonate precipitation in veins and at some reaction sites after the primary mantle minerals. We propose that formation of CO2 inclusions, glass and carbonate in hydrated mantle xenoliths is not unique of carbonatite metasomatism: comparable effects can be produced by degassing alkaline magmas." @default.
- W2016261638 created "2016-06-24" @default.
- W2016261638 creator A5003816132 @default.
- W2016261638 creator A5012081424 @default.
- W2016261638 creator A5014481590 @default.
- W2016261638 creator A5035607102 @default.
- W2016261638 creator A5071745210 @default.
- W2016261638 date "2009-01-01" @default.
- W2016261638 modified "2023-09-29" @default.
- W2016261638 title "CO2 fluid and silicate glass as monitors of alkali basalt/peridotite interaction in the mantle wedge beneath Gobernador Gregores, Southern Patagonia" @default.
- W2016261638 cites W1964420856 @default.
- W2016261638 cites W1968839333 @default.
- W2016261638 cites W1973392885 @default.
- W2016261638 cites W1974550481 @default.
- W2016261638 cites W1976039683 @default.
- W2016261638 cites W1976926874 @default.
- W2016261638 cites W1977457396 @default.
- W2016261638 cites W1978402924 @default.
- W2016261638 cites W1987166327 @default.
- W2016261638 cites W1988613803 @default.
- W2016261638 cites W1988790976 @default.
- W2016261638 cites W1990672407 @default.
- W2016261638 cites W1994267340 @default.
- W2016261638 cites W1994380392 @default.
- W2016261638 cites W1997142214 @default.
- W2016261638 cites W1997643113 @default.
- W2016261638 cites W1999323899 @default.
- W2016261638 cites W2000506586 @default.
- W2016261638 cites W2002975639 @default.
- W2016261638 cites W2008281306 @default.
- W2016261638 cites W2008297722 @default.
- W2016261638 cites W2013652429 @default.
- W2016261638 cites W2017784300 @default.
- W2016261638 cites W2018530679 @default.
- W2016261638 cites W2019143950 @default.
- W2016261638 cites W2022776122 @default.
- W2016261638 cites W2025798495 @default.
- W2016261638 cites W2030592098 @default.
- W2016261638 cites W2030670948 @default.
- W2016261638 cites W2035283420 @default.
- W2016261638 cites W2036223480 @default.
- W2016261638 cites W2041112329 @default.
- W2016261638 cites W2044625514 @default.
- W2016261638 cites W2049821626 @default.
- W2016261638 cites W2052719114 @default.
- W2016261638 cites W2055484311 @default.
- W2016261638 cites W2059258846 @default.
- W2016261638 cites W2060351280 @default.
- W2016261638 cites W2064530630 @default.
- W2016261638 cites W2066672420 @default.
- W2016261638 cites W2071336893 @default.
- W2016261638 cites W2072884789 @default.
- W2016261638 cites W2073346879 @default.
- W2016261638 cites W2079488564 @default.
- W2016261638 cites W2080034753 @default.
- W2016261638 cites W2086452348 @default.
- W2016261638 cites W2088076232 @default.
- W2016261638 cites W2095278167 @default.
- W2016261638 cites W2098333928 @default.
- W2016261638 cites W2106358545 @default.
- W2016261638 cites W2112842178 @default.
- W2016261638 cites W2120148220 @default.
- W2016261638 cites W2128321934 @default.
- W2016261638 cites W2150545552 @default.
- W2016261638 cites W2155413836 @default.
- W2016261638 cites W2164139161 @default.
- W2016261638 cites W2168386729 @default.
- W2016261638 cites W2299614795 @default.
- W2016261638 cites W2322306749 @default.
- W2016261638 cites W2326883079 @default.
- W2016261638 cites W2597038571 @default.
- W2016261638 cites W2771804705 @default.
- W2016261638 cites W2974457917 @default.
- W2016261638 cites W4235923332 @default.
- W2016261638 doi "https://doi.org/10.1016/j.lithos.2008.06.015" @default.
- W2016261638 hasPublicationYear "2009" @default.
- W2016261638 type Work @default.
- W2016261638 sameAs 2016261638 @default.
- W2016261638 citedByCount "19" @default.
- W2016261638 countsByYear W20162616382012 @default.
- W2016261638 countsByYear W20162616382013 @default.
- W2016261638 countsByYear W20162616382014 @default.
- W2016261638 countsByYear W20162616382015 @default.
- W2016261638 countsByYear W20162616382017 @default.
- W2016261638 countsByYear W20162616382018 @default.
- W2016261638 countsByYear W20162616382019 @default.
- W2016261638 countsByYear W20162616382020 @default.
- W2016261638 countsByYear W20162616382022 @default.
- W2016261638 crossrefType "journal-article" @default.
- W2016261638 hasAuthorship W2016261638A5003816132 @default.
- W2016261638 hasAuthorship W2016261638A5012081424 @default.
- W2016261638 hasAuthorship W2016261638A5014481590 @default.
- W2016261638 hasAuthorship W2016261638A5035607102 @default.
- W2016261638 hasAuthorship W2016261638A5071745210 @default.
- W2016261638 hasConcept C120806208 @default.
- W2016261638 hasConcept C127313418 @default.
- W2016261638 hasConcept C140441402 @default.
- W2016261638 hasConcept C151730666 @default.