Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016276211> ?p ?o ?g. }
- W2016276211 endingPage "215" @default.
- W2016276211 startingPage "203" @default.
- W2016276211 abstract "Highlights:• Some differentiated alkaline rocks may evolve by FC or AFC but not both• Analyses of acid-leached samples necessary to detect unsupported 87Sr• Crustal contamination hardly detectable in high-Sr lavas but obvious in low-Sr lavas• Deep crustal contamination confirmed by high-precision Pb double-spike data• Positively correlated 87Sr/86Sr ratios - δ18O values also indicate crustal contaminationThe volcanic rocks of the Rhon area (Central European Volcanic Province, Germany) belong to a moderately alkali basaltic suite that is associated with minor tephriphonolites, phonotephrites, tephrites, phonolites and trachytes. Based on isotope sytematics (87Sr/86Sr: 0.7033-0.7042; 143Nd/144Nd: 0.51279-0.51287; 206Pb/204Pb: 19.1-19.5), the inferred parental magmas formed by variable degrees of partial melting of a common asthenospheric mantle source (EAR: European Asthenospheric Reservoir of Cebria and Wilson, 1995). Tephrites, tephriphonolites, phonotephrites, phonolites and trachytes show depletions and enrichments in some trace elements (Sr, Ba, Nb, Zr, Y) indicating that they were generated by broadly similar differentiation processes that were dominated by fractionation of olivine, clinopyroxene, amphibole, apatite and titaniferous magnetite ± plagioclase ± alkalifeldspar. The fractionated samples seem to have evolved by two distinct processes. One is characterized by pure fractional crystallization indicated by increasing Nb (and other incompatible trace element) concentrations at virtually constant 143Nd/144Nd ~ 0.51280 and 87Sr/86Sr ~ 0.7035. The other process involved an assimilation-fractional crystallization process (AFC) where moderate assimilation to crystallization rates produced evolved magmas characterized by higher Nb concentrations at slightly lower 143Nd/144Nd down to 0.51275. Literature data for some of the evolved rocks show more variable 87Sr/86Sr ranging from 0.7037-0.7089 at constant 143Nd/144Nd ~ 0.51280. These features may result from assimilation of upper crustal rocks by highly differentiated low-Sr (< 100 ppm Sr) lavas. However, based on the displacement of the differentiated rocks from this study towards lower 143Nd/144Nd ratios and modeled AFC processes in 143Nd/144Nd vs. 87Sr/86Sr and 207Pb/204Pb vs. 143Nd/144Nd space assimilation of lower crustal rocks seems more likely. The view that assimilation of lower crustal rocks played a role is confirmed by high-precision double-spike Pb isotope data that reveal higher 207Pb/204Pb ratios (15.62-15.63) in the differentiated rocks than in the primitive basanites (15.58-15.61). This is compatible with incorporation of radiogenic Pb from lower crustal xenoliths (207Pb/204Pb: 15.63-15.69) into the melt. However, 206Pb/204Pb ratios are similar for the differentiated rocks (19.13-19.35) and the primitive basanites (19.12-19.55) implying that assimilation involved an ancient crustal end member with a higher U/Pb ratio than the mantle source of the basanites. In addition, alteration-corrected δ18O values of the differentiated rocks range from c. 5 to 7 ‰ which is the same range as observed in the primitive alkaline rocks. This study confirms previous interpretations that highlighted the role of AFC processes in the evolution of alkaline volcanic rocks in the Rhon area of the Central European Volcanic Province." @default.
- W2016276211 created "2016-06-24" @default.
- W2016276211 creator A5010437340 @default.
- W2016276211 creator A5011152663 @default.
- W2016276211 creator A5014800301 @default.
- W2016276211 creator A5059217459 @default.
- W2016276211 creator A5082528922 @default.
- W2016276211 date "2013-09-01" @default.
- W2016276211 modified "2023-10-16" @default.
- W2016276211 title "Petrogenesis of rift-related tephrites, phonolites and trachytes (Central European Volcanic Province, Rhön, FRG): Constraints from Sr, Nd, Pb and O isotopes" @default.
- W2016276211 cites W1609442959 @default.
- W2016276211 cites W1626853990 @default.
- W2016276211 cites W1966219619 @default.
- W2016276211 cites W1968103236 @default.
- W2016276211 cites W1978658483 @default.
- W2016276211 cites W1982005903 @default.
- W2016276211 cites W1983304774 @default.
- W2016276211 cites W1990832360 @default.
- W2016276211 cites W1991587479 @default.
- W2016276211 cites W1991788391 @default.
- W2016276211 cites W1994012211 @default.
- W2016276211 cites W1994370075 @default.
- W2016276211 cites W1997228417 @default.
- W2016276211 cites W1997677279 @default.
- W2016276211 cites W1998842874 @default.
- W2016276211 cites W2000517918 @default.
- W2016276211 cites W2016691452 @default.
- W2016276211 cites W2020437910 @default.
- W2016276211 cites W2021018961 @default.
- W2016276211 cites W2021610508 @default.
- W2016276211 cites W2023540560 @default.
- W2016276211 cites W2024575502 @default.
- W2016276211 cites W2025160267 @default.
- W2016276211 cites W2029211105 @default.
- W2016276211 cites W2031423471 @default.
- W2016276211 cites W2035044185 @default.
- W2016276211 cites W2035309884 @default.
- W2016276211 cites W2039704788 @default.
- W2016276211 cites W2041627403 @default.
- W2016276211 cites W2045986371 @default.
- W2016276211 cites W2047567126 @default.
- W2016276211 cites W2047619392 @default.
- W2016276211 cites W2051162497 @default.
- W2016276211 cites W2055412942 @default.
- W2016276211 cites W2055812626 @default.
- W2016276211 cites W2065489771 @default.
- W2016276211 cites W2067336738 @default.
- W2016276211 cites W2068202901 @default.
- W2016276211 cites W2085060756 @default.
- W2016276211 cites W2087420220 @default.
- W2016276211 cites W2088729389 @default.
- W2016276211 cites W2092836793 @default.
- W2016276211 cites W2115883358 @default.
- W2016276211 cites W2130549249 @default.
- W2016276211 cites W2135130189 @default.
- W2016276211 cites W2141802516 @default.
- W2016276211 cites W2146511959 @default.
- W2016276211 cites W2158043264 @default.
- W2016276211 cites W2162462477 @default.
- W2016276211 cites W2163201608 @default.
- W2016276211 cites W2164580409 @default.
- W2016276211 cites W2166079039 @default.
- W2016276211 cites W2333133721 @default.
- W2016276211 doi "https://doi.org/10.1016/j.chemgeo.2013.06.026" @default.
- W2016276211 hasPublicationYear "2013" @default.
- W2016276211 type Work @default.
- W2016276211 sameAs 2016276211 @default.
- W2016276211 citedByCount "22" @default.
- W2016276211 countsByYear W20162762112013 @default.
- W2016276211 countsByYear W20162762112014 @default.
- W2016276211 countsByYear W20162762112015 @default.
- W2016276211 countsByYear W20162762112016 @default.
- W2016276211 countsByYear W20162762112017 @default.
- W2016276211 countsByYear W20162762112018 @default.
- W2016276211 countsByYear W20162762112019 @default.
- W2016276211 countsByYear W20162762112020 @default.
- W2016276211 countsByYear W20162762112021 @default.
- W2016276211 countsByYear W20162762112022 @default.
- W2016276211 crossrefType "journal-article" @default.
- W2016276211 hasAuthorship W2016276211A5010437340 @default.
- W2016276211 hasAuthorship W2016276211A5011152663 @default.
- W2016276211 hasAuthorship W2016276211A5014800301 @default.
- W2016276211 hasAuthorship W2016276211A5059217459 @default.
- W2016276211 hasAuthorship W2016276211A5082528922 @default.
- W2016276211 hasBestOaLocation W20162762112 @default.
- W2016276211 hasConcept C120806208 @default.
- W2016276211 hasConcept C127313418 @default.
- W2016276211 hasConcept C151730666 @default.
- W2016276211 hasConcept C161509811 @default.
- W2016276211 hasConcept C17409809 @default.
- W2016276211 hasConcept C192241223 @default.
- W2016276211 hasConcept C44938399 @default.
- W2016276211 hasConcept C50682988 @default.
- W2016276211 hasConcept C77928131 @default.
- W2016276211 hasConceptScore W2016276211C120806208 @default.
- W2016276211 hasConceptScore W2016276211C127313418 @default.
- W2016276211 hasConceptScore W2016276211C151730666 @default.
- W2016276211 hasConceptScore W2016276211C161509811 @default.