Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016283708> ?p ?o ?g. }
- W2016283708 endingPage "444" @default.
- W2016283708 startingPage "435" @default.
- W2016283708 abstract "Abstract Highly porous (>90% porosity) 45S5 Bioglass®‐derived glass‐ceramic scaffolds were fabricated by foam replication method, and coated with carbon nanotubes (CNT) (coating thickness: 1 μm) using electrophoretic deposition (EPD). In vitro cell culture using mesenchymal stem cells (MSCs) was carried out on both scaffold systems (with and without CNT coating) over a 4‐week period. By using AlamarBlue™, BSA and alkaline phosphatase assays; the cell viability and differentiation were measured quantitatively measured and compared between the two scaffold types. The results showed that both scaffold systems are biocompatible with MSCs and they can support the cellular activity. No cytotoxic effects of CNT were observed under the conditions of the present experiments. Although a lower initial cell viability on the CNT‐coated scaffolds was observed, no significant differences were found after 4 weeks of culture compared with the uncoated scaffolds. This work therefore shows that there is in principle no significant improvement of cellular responses by creating a CNT‐coating on this type of highly bioactive scaffolds. However, the electrical conductivity introduced by the coating might have the potential to increase cell viability and differentiation when cell culture is carried out under the effect of electrical stimulation. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part A:, 2011." @default.
- W2016283708 created "2016-06-24" @default.
- W2016283708 creator A5013660291 @default.
- W2016283708 creator A5031371357 @default.
- W2016283708 creator A5043592882 @default.
- W2016283708 creator A5068621433 @default.
- W2016283708 creator A5069647011 @default.
- W2016283708 creator A5090738631 @default.
- W2016283708 date "2011-09-01" @default.
- W2016283708 modified "2023-10-18" @default.
- W2016283708 title "In vitro evaluation of 45S5 Bioglass®-derived glass-ceramic scaffolds coated with carbon nanotubes" @default.
- W2016283708 cites W1964110033 @default.
- W2016283708 cites W1967105670 @default.
- W2016283708 cites W1969058928 @default.
- W2016283708 cites W1969982925 @default.
- W2016283708 cites W1972081276 @default.
- W2016283708 cites W1972651816 @default.
- W2016283708 cites W1975254455 @default.
- W2016283708 cites W1975975891 @default.
- W2016283708 cites W1977321954 @default.
- W2016283708 cites W1989525704 @default.
- W2016283708 cites W1990387724 @default.
- W2016283708 cites W1991253911 @default.
- W2016283708 cites W1991835380 @default.
- W2016283708 cites W1994579862 @default.
- W2016283708 cites W1996710557 @default.
- W2016283708 cites W2000888922 @default.
- W2016283708 cites W2001936436 @default.
- W2016283708 cites W2002241993 @default.
- W2016283708 cites W2003252624 @default.
- W2016283708 cites W2010715311 @default.
- W2016283708 cites W2012429338 @default.
- W2016283708 cites W2015473509 @default.
- W2016283708 cites W2018858346 @default.
- W2016283708 cites W2021913374 @default.
- W2016283708 cites W2030829906 @default.
- W2016283708 cites W2032467364 @default.
- W2016283708 cites W2032655864 @default.
- W2016283708 cites W2035531193 @default.
- W2016283708 cites W2041534513 @default.
- W2016283708 cites W2047749187 @default.
- W2016283708 cites W2051142390 @default.
- W2016283708 cites W2057604930 @default.
- W2016283708 cites W2057942581 @default.
- W2016283708 cites W2061919780 @default.
- W2016283708 cites W2063700039 @default.
- W2016283708 cites W2068779677 @default.
- W2016283708 cites W2070934000 @default.
- W2016283708 cites W2070975738 @default.
- W2016283708 cites W2071732966 @default.
- W2016283708 cites W2078211660 @default.
- W2016283708 cites W2079573489 @default.
- W2016283708 cites W2084304606 @default.
- W2016283708 cites W2084871843 @default.
- W2016283708 cites W2087111940 @default.
- W2016283708 cites W2089862330 @default.
- W2016283708 cites W2092839510 @default.
- W2016283708 cites W2093260616 @default.
- W2016283708 cites W2094372275 @default.
- W2016283708 cites W2107310361 @default.
- W2016283708 cites W2108550639 @default.
- W2016283708 cites W2109700637 @default.
- W2016283708 cites W2111415695 @default.
- W2016283708 cites W2114200005 @default.
- W2016283708 cites W2134197804 @default.
- W2016283708 cites W2143391484 @default.
- W2016283708 cites W2153034104 @default.
- W2016283708 cites W2157388755 @default.
- W2016283708 cites W2170619852 @default.
- W2016283708 doi "https://doi.org/10.1002/jbm.a.33185" @default.
- W2016283708 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21887738" @default.
- W2016283708 hasPublicationYear "2011" @default.
- W2016283708 type Work @default.
- W2016283708 sameAs 2016283708 @default.
- W2016283708 citedByCount "40" @default.
- W2016283708 countsByYear W20162837082012 @default.
- W2016283708 countsByYear W20162837082013 @default.
- W2016283708 countsByYear W20162837082014 @default.
- W2016283708 countsByYear W20162837082015 @default.
- W2016283708 countsByYear W20162837082016 @default.
- W2016283708 countsByYear W20162837082017 @default.
- W2016283708 countsByYear W20162837082018 @default.
- W2016283708 countsByYear W20162837082019 @default.
- W2016283708 countsByYear W20162837082020 @default.
- W2016283708 countsByYear W20162837082021 @default.
- W2016283708 countsByYear W20162837082022 @default.
- W2016283708 crossrefType "journal-article" @default.
- W2016283708 hasAuthorship W2016283708A5013660291 @default.
- W2016283708 hasAuthorship W2016283708A5031371357 @default.
- W2016283708 hasAuthorship W2016283708A5043592882 @default.
- W2016283708 hasAuthorship W2016283708A5068621433 @default.
- W2016283708 hasAuthorship W2016283708A5069647011 @default.
- W2016283708 hasAuthorship W2016283708A5090738631 @default.
- W2016283708 hasConcept C134132462 @default.
- W2016283708 hasConcept C136229726 @default.
- W2016283708 hasConcept C159985019 @default.
- W2016283708 hasConcept C185592680 @default.
- W2016283708 hasConcept C192562407 @default.