Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016290075> ?p ?o ?g. }
- W2016290075 abstract "Network inference of gene expression data is an important challenge in systems biology. Novel algorithms may provide more detailed gene regulatory networks (GRN) for complex, chronic inflammatory diseases such as rheumatoid arthritis (RA), in which activated synovial fibroblasts (SFBs) play a major role. Since the detailed mechanisms underlying this activation are still unclear, simultaneous investigation of multi-stimuli activation of SFBs offers the possibility to elucidate the regulatory effects of multiple mediators and to gain new insights into disease pathogenesis. A GRN was therefore inferred from RA-SFBs treated with 4 different stimuli (IL-1 β, TNF- α, TGF- β, and PDGF-D). Data from time series microarray experiments (0, 1, 2, 4, 12 h; Affymetrix HG-U133 Plus 2.0) were batch-corrected applying ‘ComBat’, analyzed for differentially expressed genes over time with ‘Limma’, and used for the inference of a robust GRN with NetGenerator V2.0, a heuristic ordinary differential equation-based method with soft integration of prior knowledge. Using all genes differentially expressed over time in RA-SFBs for any stimulus, and selecting the genes belonging to the most significant gene ontology (GO) term, i.e., ‘cartilage development’, a dynamic, robust, moderately complex multi-stimuli GRN was generated with 24 genes and 57 edges in total, 31 of which were gene-to-gene edges. Prior literature-based knowledge derived from Pathway Studio or manual searches was reflected in the final network by 25/57 confirmed edges (44%). The model contained known network motifs crucial for dynamic cellular behavior, e.g., cross-talk among pathways, positive feed-back loops, and positive feed-forward motifs (including suppression of the transcriptional repressor OSR2 by all 4 stimuli. A multi-stimuli GRN highly concordant with literature data was successfully generated by network inference from the gene expression of stimulated RA-SFBs. The GRN showed high reliability, since 10 predicted edges were independently validated by literature findings post network inference. The selected GO term ‘cartilage development’ contained a number of differentiation markers, growth factors, and transcription factors with potential relevance for RA. Finally, the model provided new insight into the response of RA-SFBs to multiple stimuli implicated in the pathogenesis of RA, in particular to the ‘novel’ potent growth factor PDGF-D." @default.
- W2016290075 created "2016-06-24" @default.
- W2016290075 creator A5000809255 @default.
- W2016290075 creator A5001449965 @default.
- W2016290075 creator A5017592646 @default.
- W2016290075 creator A5029099340 @default.
- W2016290075 creator A5048877783 @default.
- W2016290075 creator A5060233539 @default.
- W2016290075 creator A5086520432 @default.
- W2016290075 creator A5089080265 @default.
- W2016290075 date "2014-07-03" @default.
- W2016290075 modified "2023-10-03" @default.
- W2016290075 title "Novel application of multi-stimuli network inference to synovial fibroblasts of rheumatoid arthritis patients" @default.
- W2016290075 cites W1543126301 @default.
- W2016290075 cites W1546952499 @default.
- W2016290075 cites W1589875314 @default.
- W2016290075 cites W1670519844 @default.
- W2016290075 cites W1963522244 @default.
- W2016290075 cites W1963999360 @default.
- W2016290075 cites W1976243900 @default.
- W2016290075 cites W1983489752 @default.
- W2016290075 cites W1995017987 @default.
- W2016290075 cites W2000264668 @default.
- W2016290075 cites W2000343446 @default.
- W2016290075 cites W2004337395 @default.
- W2016290075 cites W2006417453 @default.
- W2016290075 cites W2006826160 @default.
- W2016290075 cites W2014716295 @default.
- W2016290075 cites W2025851689 @default.
- W2016290075 cites W2026042125 @default.
- W2016290075 cites W2037038929 @default.
- W2016290075 cites W2039285533 @default.
- W2016290075 cites W2046018563 @default.
- W2016290075 cites W2056754627 @default.
- W2016290075 cites W2060002238 @default.
- W2016290075 cites W2062684762 @default.
- W2016290075 cites W2065515536 @default.
- W2016290075 cites W2067306349 @default.
- W2016290075 cites W2068000292 @default.
- W2016290075 cites W2074089196 @default.
- W2016290075 cites W2074438676 @default.
- W2016290075 cites W2077103495 @default.
- W2016290075 cites W2080884683 @default.
- W2016290075 cites W2081098333 @default.
- W2016290075 cites W2081827620 @default.
- W2016290075 cites W2083109115 @default.
- W2016290075 cites W2088645589 @default.
- W2016290075 cites W2098145001 @default.
- W2016290075 cites W2100639130 @default.
- W2016290075 cites W2102229444 @default.
- W2016290075 cites W2103683906 @default.
- W2016290075 cites W2105891259 @default.
- W2016290075 cites W2107665951 @default.
- W2016290075 cites W2108410418 @default.
- W2016290075 cites W2108543860 @default.
- W2016290075 cites W2108579152 @default.
- W2016290075 cites W2109496182 @default.
- W2016290075 cites W2110280725 @default.
- W2016290075 cites W2114565252 @default.
- W2016290075 cites W2120865735 @default.
- W2016290075 cites W2122044177 @default.
- W2016290075 cites W2131599508 @default.
- W2016290075 cites W2131706188 @default.
- W2016290075 cites W2138255346 @default.
- W2016290075 cites W2138460987 @default.
- W2016290075 cites W2141592092 @default.
- W2016290075 cites W2143364665 @default.
- W2016290075 cites W2143660712 @default.
- W2016290075 cites W2149026148 @default.
- W2016290075 cites W2150703234 @default.
- W2016290075 cites W2151313241 @default.
- W2016290075 cites W2152348310 @default.
- W2016290075 cites W2155702314 @default.
- W2016290075 cites W2157523980 @default.
- W2016290075 cites W2159579113 @default.
- W2016290075 cites W2163047938 @default.
- W2016290075 cites W2163296862 @default.
- W2016290075 cites W2166428507 @default.
- W2016290075 cites W2167862457 @default.
- W2016290075 cites W3098834468 @default.
- W2016290075 cites W4233622718 @default.
- W2016290075 cites W4294107304 @default.
- W2016290075 cites W54413410 @default.
- W2016290075 doi "https://doi.org/10.1186/1755-8794-7-40" @default.
- W2016290075 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4099018" @default.
- W2016290075 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24989895" @default.
- W2016290075 hasPublicationYear "2014" @default.
- W2016290075 type Work @default.
- W2016290075 sameAs 2016290075 @default.
- W2016290075 citedByCount "6" @default.
- W2016290075 countsByYear W20162900752016 @default.
- W2016290075 countsByYear W20162900752018 @default.
- W2016290075 countsByYear W20162900752020 @default.
- W2016290075 crossrefType "journal-article" @default.
- W2016290075 hasAuthorship W2016290075A5000809255 @default.
- W2016290075 hasAuthorship W2016290075A5001449965 @default.
- W2016290075 hasAuthorship W2016290075A5017592646 @default.
- W2016290075 hasAuthorship W2016290075A5029099340 @default.
- W2016290075 hasAuthorship W2016290075A5048877783 @default.
- W2016290075 hasAuthorship W2016290075A5060233539 @default.