Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016291393> ?p ?o ?g. }
- W2016291393 endingPage "25" @default.
- W2016291393 startingPage "14" @default.
- W2016291393 abstract "We present new nitrogen isotope data from the water column and surface sediments for paleo–proxy validation collected along the Peruvian and Ecuadorian margins between 1°N and 18°S. Productivity proxies in the bulk sediment (organic carbon, total nitrogen, biogenic opal, C37 alkenone concentrations) and 15N/14N ratios were measured at more than 80 locations within and outside the present-day Peruvian oxygen minimum zone (OMZ). Microbial N-loss to N2 in subsurface waters under O2 deficient conditions leaves a characteristic 15N-enriched signal in underlying sediments. We find that phytoplankton nutrient uptake in surface waters within the high nutrient, low chlorophyll (HNLC) regions of the Peruvian upwelling system influences the sedimentary signal as well. How the δ15Nsed signal is linked to these processes is studied by comparing core-top values to the 15N/14N of nitrate and nitrite (δ15NNOx) in the upper 200 m of the water column. Between 1°N and 10°S, subsurface O2 is still high enough to suppress N-loss keeping δ15NNOx values relatively low in the subsurface waters. However δ15NNOx values increase toward the surface due to partial nitrate utilization in the photic zone in this HNLC portion of the system. δ15Nsed is consistently lower than the isotopic signature of upwelled NO3−, likely due to the corresponding production of 15N depleted organic matter. Between 10°S and 15°S, the current position of perennial upwelling cells, HNLC conditions are relaxed and biological production and near-surface phytoplankton uptake of upwelled NO3− are most intense. In addition, subsurface O2 concentration decreases to levels sufficient for N-loss by denitrification and/or anammox, resulting in elevated subsurface δ15NNOx values in the source waters for coastal upwelling. Increasingly higher production southward is reflected by various productivity proxies in the sediments, while the north–south gradient towards stronger surface NO3− utilization and subsurface N-loss is reflected in the surface sediment 15N/14N ratios. South of 10°S, δ15Nsed is lower than maximum water column δ15NNOx values most likely because only a portion of the upwelled water originates from the depths where highest δ15NNOx values prevail. Though the enrichment of δ15NNOx in the subsurface waters is unambiguously reflected in δ15Nsed values, the magnitude of δ15Nsed enrichment depends on both the depth of upwelled waters and high subsurface δ15NNOx values produce by N-loss. Overall, the degree of N-loss influencing subsurface δ15NNOx values, the depth origin of upwelled waters, and the degree of near-surface nitrate utilization under HNLC conditions should be considered for the interpretation of paleo δ15Nsed records from the Peruvian oxygen minimum zone." @default.
- W2016291393 created "2016-06-24" @default.
- W2016291393 creator A5041849636 @default.
- W2016291393 creator A5051780842 @default.
- W2016291393 creator A5056415471 @default.
- W2016291393 creator A5079855584 @default.
- W2016291393 creator A5081670746 @default.
- W2016291393 creator A5090277832 @default.
- W2016291393 date "2012-12-01" @default.
- W2016291393 modified "2023-09-26" @default.
- W2016291393 title "Nitrogen isotope gradients off Peru and Ecuador related to upwelling, productivity, nutrient uptake and oxygen deficiency" @default.
- W2016291393 cites W1500582864 @default.
- W2016291393 cites W1530582274 @default.
- W2016291393 cites W1593348032 @default.
- W2016291393 cites W1721202428 @default.
- W2016291393 cites W1799280347 @default.
- W2016291393 cites W1965897246 @default.
- W2016291393 cites W1966569540 @default.
- W2016291393 cites W1969494113 @default.
- W2016291393 cites W1976477435 @default.
- W2016291393 cites W1978239676 @default.
- W2016291393 cites W1979340125 @default.
- W2016291393 cites W1983759685 @default.
- W2016291393 cites W1984109478 @default.
- W2016291393 cites W1996606404 @default.
- W2016291393 cites W1999525216 @default.
- W2016291393 cites W2004142130 @default.
- W2016291393 cites W2005820608 @default.
- W2016291393 cites W2006251725 @default.
- W2016291393 cites W2008924413 @default.
- W2016291393 cites W2012358502 @default.
- W2016291393 cites W2013225915 @default.
- W2016291393 cites W2013836518 @default.
- W2016291393 cites W2014587240 @default.
- W2016291393 cites W2014691272 @default.
- W2016291393 cites W2018459257 @default.
- W2016291393 cites W2019852217 @default.
- W2016291393 cites W2023168353 @default.
- W2016291393 cites W2028380994 @default.
- W2016291393 cites W2030125283 @default.
- W2016291393 cites W2030534042 @default.
- W2016291393 cites W2032091379 @default.
- W2016291393 cites W2034190996 @default.
- W2016291393 cites W2039781035 @default.
- W2016291393 cites W2041877422 @default.
- W2016291393 cites W2042077234 @default.
- W2016291393 cites W2046621669 @default.
- W2016291393 cites W2047778055 @default.
- W2016291393 cites W2048227697 @default.
- W2016291393 cites W2048342577 @default.
- W2016291393 cites W2052066227 @default.
- W2016291393 cites W2053609212 @default.
- W2016291393 cites W2054047115 @default.
- W2016291393 cites W2057076149 @default.
- W2016291393 cites W2058109759 @default.
- W2016291393 cites W2059729107 @default.
- W2016291393 cites W2062768399 @default.
- W2016291393 cites W2068201483 @default.
- W2016291393 cites W2068312108 @default.
- W2016291393 cites W2071966721 @default.
- W2016291393 cites W2075385168 @default.
- W2016291393 cites W2075674156 @default.
- W2016291393 cites W2089573081 @default.
- W2016291393 cites W2091939918 @default.
- W2016291393 cites W2093297749 @default.
- W2016291393 cites W2100820351 @default.
- W2016291393 cites W2103510450 @default.
- W2016291393 cites W2106922850 @default.
- W2016291393 cites W2111789229 @default.
- W2016291393 cites W2115859175 @default.
- W2016291393 cites W2118545760 @default.
- W2016291393 cites W2122571325 @default.
- W2016291393 cites W2133020121 @default.
- W2016291393 cites W2135555298 @default.
- W2016291393 cites W2136224973 @default.
- W2016291393 cites W2136687334 @default.
- W2016291393 cites W2140091868 @default.
- W2016291393 cites W2141806660 @default.
- W2016291393 cites W2147481833 @default.
- W2016291393 cites W2156829969 @default.
- W2016291393 cites W4251084988 @default.
- W2016291393 doi "https://doi.org/10.1016/j.dsr.2012.06.003" @default.
- W2016291393 hasPublicationYear "2012" @default.
- W2016291393 type Work @default.
- W2016291393 sameAs 2016291393 @default.
- W2016291393 citedByCount "39" @default.
- W2016291393 countsByYear W20162913932013 @default.
- W2016291393 countsByYear W20162913932014 @default.
- W2016291393 countsByYear W20162913932015 @default.
- W2016291393 countsByYear W20162913932016 @default.
- W2016291393 countsByYear W20162913932017 @default.
- W2016291393 countsByYear W20162913932018 @default.
- W2016291393 countsByYear W20162913932019 @default.
- W2016291393 countsByYear W20162913932020 @default.
- W2016291393 countsByYear W20162913932021 @default.
- W2016291393 countsByYear W20162913932022 @default.
- W2016291393 countsByYear W20162913932023 @default.
- W2016291393 crossrefType "journal-article" @default.