Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016294593> ?p ?o ?g. }
- W2016294593 endingPage "29494" @default.
- W2016294593 startingPage "29483" @default.
- W2016294593 abstract "High‐spectral resolution reflectance data were acquired in the laboratory for several species of boreal forest and peatland mosses. Feather mosses and lichens (forests), brown mosses (rich fens), and Sphagnum species (bogs and poor fens) were collected from sites in the northern study area (NSA) of the Boreal Ecosystem‐Atmosphere Study (BOREAS) near Thompson, Manitoba, and from three peatlands in southeastern New Hampshire. Because mosses are indirect indicators of soil moisture, trace gas flux, and carbon accumulation, these data may enable hyperspectral remote sensing systems, such as the airborne visible and infrared imaging spectrometer and the compact airborne spectrographic imager (AVIRIS) (CASI), as well as future systems such as Lewis and the first New Millennium Project, to infer differences in hydrology and carbon cycling in boreal ecosystems at small spatial scales (< 1–900 m 2 ). Mosses exhibit distinctly different spectral characteristics from vascular plants in the visible, near‐infrared (NIR) and short‐wave infrared (SWIR) regions. In the visible portion of the spectrum, mosses exhibit typical absorption in the blue and red regions but differ from vascular plants in having a “green” peak reflective of the color (red, brown, or green) of the individual species. The moss reflectance in the NIR spectral region is typically less reflective than the same region in vascular plants and is characterized by strong water absorption features located at approximately 1.00 and 1.20 μm, resulting in pronounced reflectance peaks at approximately 0.85, 1.10, and 1.30 μm (identified as NIR 1, 2, and 3, respectively). The variations in the relative brightness of the three NIR peaks in each of the three groups of mosses ( Sphagnum , feather, and brown mosses) are diagnostic and may be indicative of different cellular characteristics. The slope of the NIR plateau as determined by the NIR 3/1 ratio, as well as the shape of the NIR 1 peak and relative dominance of NIR 2, separate the three groups. In addition, the NIR 1 peak in Sphagnum species is marked by a minor absorption feature at 0.85 μm, which is absent in all brown mosses and feather mosses, as well as in vascular plants. Because this absorption feature results in a narrow NIR 1 peak, and the red absorption is also narrow in Sphagnum , the standard normalized difference vegetation index/simple vegetation index ratio (NDVI/VI) methods do not work well in characterizing biomass or greenness. The overall reflectance of mosses in the SWIR region (1.50–2.50 μm) is lower than that of vascular plants because of the higher water content of the moss tissue. In lichens, reflectance in this region is higher than either mosses or vascular plants, due likely to tissue dryness. The lichens included in this study are most dissimilar from mosses and vascular plants in the visible portion of the spectrum." @default.
- W2016294593 created "2016-06-24" @default.
- W2016294593 creator A5053233428 @default.
- W2016294593 creator A5056356588 @default.
- W2016294593 creator A5083987783 @default.
- W2016294593 date "1997-12-01" @default.
- W2016294593 modified "2023-10-11" @default.
- W2016294593 title "Spectral reflectance measurements of boreal wetland and forest mosses" @default.
- W2016294593 cites W135589318 @default.
- W2016294593 cites W1933407569 @default.
- W2016294593 cites W1967904569 @default.
- W2016294593 cites W1969729109 @default.
- W2016294593 cites W1982516117 @default.
- W2016294593 cites W1982943428 @default.
- W2016294593 cites W1987097445 @default.
- W2016294593 cites W1987109267 @default.
- W2016294593 cites W1992755027 @default.
- W2016294593 cites W1995206435 @default.
- W2016294593 cites W2013203541 @default.
- W2016294593 cites W2013435127 @default.
- W2016294593 cites W2015346695 @default.
- W2016294593 cites W2015431698 @default.
- W2016294593 cites W2021889809 @default.
- W2016294593 cites W2024007064 @default.
- W2016294593 cites W2036417688 @default.
- W2016294593 cites W2038499896 @default.
- W2016294593 cites W2046759977 @default.
- W2016294593 cites W2049299109 @default.
- W2016294593 cites W2049398443 @default.
- W2016294593 cites W2053967244 @default.
- W2016294593 cites W2059312409 @default.
- W2016294593 cites W2059971685 @default.
- W2016294593 cites W2064437885 @default.
- W2016294593 cites W2077733319 @default.
- W2016294593 cites W2082252181 @default.
- W2016294593 cites W2082959586 @default.
- W2016294593 cites W2083278069 @default.
- W2016294593 cites W2084834529 @default.
- W2016294593 cites W2094462158 @default.
- W2016294593 cites W2094866193 @default.
- W2016294593 cites W2106151558 @default.
- W2016294593 cites W2127816908 @default.
- W2016294593 cites W2162875565 @default.
- W2016294593 cites W2166697679 @default.
- W2016294593 cites W2248139498 @default.
- W2016294593 cites W2313563420 @default.
- W2016294593 cites W2318340259 @default.
- W2016294593 cites W2331088909 @default.
- W2016294593 cites W2488582809 @default.
- W2016294593 doi "https://doi.org/10.1029/97jd02316" @default.
- W2016294593 hasPublicationYear "1997" @default.
- W2016294593 type Work @default.
- W2016294593 sameAs 2016294593 @default.
- W2016294593 citedByCount "110" @default.
- W2016294593 countsByYear W20162945932012 @default.
- W2016294593 countsByYear W20162945932013 @default.
- W2016294593 countsByYear W20162945932014 @default.
- W2016294593 countsByYear W20162945932015 @default.
- W2016294593 countsByYear W20162945932016 @default.
- W2016294593 countsByYear W20162945932017 @default.
- W2016294593 countsByYear W20162945932018 @default.
- W2016294593 countsByYear W20162945932019 @default.
- W2016294593 countsByYear W20162945932020 @default.
- W2016294593 countsByYear W20162945932021 @default.
- W2016294593 countsByYear W20162945932022 @default.
- W2016294593 countsByYear W20162945932023 @default.
- W2016294593 crossrefType "journal-article" @default.
- W2016294593 hasAuthorship W2016294593A5053233428 @default.
- W2016294593 hasAuthorship W2016294593A5056356588 @default.
- W2016294593 hasAuthorship W2016294593A5083987783 @default.
- W2016294593 hasBestOaLocation W20162945931 @default.
- W2016294593 hasConcept C100537666 @default.
- W2016294593 hasConcept C111368507 @default.
- W2016294593 hasConcept C120149898 @default.
- W2016294593 hasConcept C122284674 @default.
- W2016294593 hasConcept C127313418 @default.
- W2016294593 hasConcept C132651083 @default.
- W2016294593 hasConcept C1549246 @default.
- W2016294593 hasConcept C176641082 @default.
- W2016294593 hasConcept C18903297 @default.
- W2016294593 hasConcept C2777253967 @default.
- W2016294593 hasConcept C2777476368 @default.
- W2016294593 hasConcept C2777707638 @default.
- W2016294593 hasConcept C2777975993 @default.
- W2016294593 hasConcept C2780888338 @default.
- W2016294593 hasConcept C39432304 @default.
- W2016294593 hasConcept C53565203 @default.
- W2016294593 hasConcept C53657456 @default.
- W2016294593 hasConcept C62649853 @default.
- W2016294593 hasConcept C67715294 @default.
- W2016294593 hasConcept C86803240 @default.
- W2016294593 hasConcept C87621631 @default.
- W2016294593 hasConcept C91586092 @default.
- W2016294593 hasConceptScore W2016294593C100537666 @default.
- W2016294593 hasConceptScore W2016294593C111368507 @default.
- W2016294593 hasConceptScore W2016294593C120149898 @default.
- W2016294593 hasConceptScore W2016294593C122284674 @default.
- W2016294593 hasConceptScore W2016294593C127313418 @default.