Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016299239> ?p ?o ?g. }
- W2016299239 abstract "Results of second law analysis of experimentally-measured aerodynamic losses are presented for a cambered vane with and without film cooling, including comparisons with similar results from a symmetric airfoil. Included are distributions of local entropy creation, as well as mass-averaged magnitudes of global exergy destruction. The axial chord length of the cambered vane is 4.85 cm, the true chord length is 7.27 cm, and the effective pitch is 6.35 cm. Data are presented for three airfoil Mex distributions (including one wherein the flow is transonic), magnitudes of inlet turbulence intensity from 1.1% to 8.2%, and ks/cx surface roughness values of 0, 0.00108, and 0.00258. The associated second law aerodynamics losses are presented for two different measurement locations downstream of the vane trailing edge (one axial chord length and 0.25 axial chord length). The surface roughness, when present, simulates characteristics of the actual roughness which develops on operating turbine airfoils from a utility power engine, over long operating times, due to particulate deposition and to spallation of thermal barrier coatings. Quantitative surface roughness characteristics which are matched include equivalent sandgrain roughness size, as well as the irregularity, nonuniformity, and the three-dimensional irregular arrangement of the roughness. Relative to a smooth, symmetric airfoil with no film cooling at low Mach number and low freestream turbulence intensity, overall, the largest increases in exergy destruction occur with increasing Mach number, and increasing surface roughness. Important variations are also observed as airfoil camber changes. Progressively smaller mass-averaged exergy destruction increases are then observed with changes of freestream turbulence intensity, and different film cooling conditions. In addition, the dependences of overall exergy destruction magnitudes on mainstream turbulence intensity and freestream Mach number are vastly different as level of vane surface roughness changes. When film cooling is present, overall mass-averaged exergy destruction magnitudes are significantly less than values associated with increased airfoil surface roughness for both the cambered vane and the symmetric airfoil. Dimensional exergy destruction values (associated with wake aerodynamic losses) for the symmetric airfoil with film cooling are then significantly higher than data from the cambered vane with film cooling, when compared at a particular blowing ratio." @default.
- W2016299239 created "2016-06-24" @default.
- W2016299239 creator A5032643257 @default.
- W2016299239 creator A5065689122 @default.
- W2016299239 date "2013-06-05" @default.
- W2016299239 modified "2023-09-23" @default.
- W2016299239 title "Second Law Analysis of Aerodynamic Losses: Results for a Cambered Vane With and Without Film Cooling" @default.
- W2016299239 cites W1972226055 @default.
- W2016299239 cites W1977677153 @default.
- W2016299239 cites W1984358120 @default.
- W2016299239 cites W1990747558 @default.
- W2016299239 cites W1991530845 @default.
- W2016299239 cites W1995226578 @default.
- W2016299239 cites W2004971816 @default.
- W2016299239 cites W2015921940 @default.
- W2016299239 cites W2016304414 @default.
- W2016299239 cites W2027663404 @default.
- W2016299239 cites W2035803165 @default.
- W2016299239 cites W2050142914 @default.
- W2016299239 cites W2052121996 @default.
- W2016299239 cites W2052625887 @default.
- W2016299239 cites W2056754315 @default.
- W2016299239 cites W2063295939 @default.
- W2016299239 cites W2069722926 @default.
- W2016299239 cites W2070041665 @default.
- W2016299239 cites W2078358773 @default.
- W2016299239 cites W2079166415 @default.
- W2016299239 cites W2090588077 @default.
- W2016299239 cites W2101596428 @default.
- W2016299239 cites W2107678117 @default.
- W2016299239 cites W2131399485 @default.
- W2016299239 cites W2136821315 @default.
- W2016299239 cites W2167454654 @default.
- W2016299239 cites W25969802 @default.
- W2016299239 cites W4229641520 @default.
- W2016299239 cites W4236588158 @default.
- W2016299239 cites W4245835494 @default.
- W2016299239 cites W4251406873 @default.
- W2016299239 cites W2085603483 @default.
- W2016299239 doi "https://doi.org/10.1115/1.4007588" @default.
- W2016299239 hasPublicationYear "2013" @default.
- W2016299239 type Work @default.
- W2016299239 sameAs 2016299239 @default.
- W2016299239 citedByCount "6" @default.
- W2016299239 countsByYear W20162992392016 @default.
- W2016299239 countsByYear W20162992392018 @default.
- W2016299239 countsByYear W20162992392021 @default.
- W2016299239 countsByYear W20162992392022 @default.
- W2016299239 crossrefType "journal-article" @default.
- W2016299239 hasAuthorship W2016299239A5032643257 @default.
- W2016299239 hasAuthorship W2016299239A5065689122 @default.
- W2016299239 hasConcept C103838597 @default.
- W2016299239 hasConcept C107365816 @default.
- W2016299239 hasConcept C112124176 @default.
- W2016299239 hasConcept C120314980 @default.
- W2016299239 hasConcept C121332964 @default.
- W2016299239 hasConcept C13393347 @default.
- W2016299239 hasConcept C159985019 @default.
- W2016299239 hasConcept C165231844 @default.
- W2016299239 hasConcept C182748727 @default.
- W2016299239 hasConcept C192562407 @default.
- W2016299239 hasConcept C194147245 @default.
- W2016299239 hasConcept C196558001 @default.
- W2016299239 hasConcept C20381859 @default.
- W2016299239 hasConcept C2776911258 @default.
- W2016299239 hasConcept C2778449969 @default.
- W2016299239 hasConcept C2779570065 @default.
- W2016299239 hasConcept C41008148 @default.
- W2016299239 hasConcept C57879066 @default.
- W2016299239 hasConcept C60053565 @default.
- W2016299239 hasConcept C71039073 @default.
- W2016299239 hasConcept C97355855 @default.
- W2016299239 hasConceptScore W2016299239C103838597 @default.
- W2016299239 hasConceptScore W2016299239C107365816 @default.
- W2016299239 hasConceptScore W2016299239C112124176 @default.
- W2016299239 hasConceptScore W2016299239C120314980 @default.
- W2016299239 hasConceptScore W2016299239C121332964 @default.
- W2016299239 hasConceptScore W2016299239C13393347 @default.
- W2016299239 hasConceptScore W2016299239C159985019 @default.
- W2016299239 hasConceptScore W2016299239C165231844 @default.
- W2016299239 hasConceptScore W2016299239C182748727 @default.
- W2016299239 hasConceptScore W2016299239C192562407 @default.
- W2016299239 hasConceptScore W2016299239C194147245 @default.
- W2016299239 hasConceptScore W2016299239C196558001 @default.
- W2016299239 hasConceptScore W2016299239C20381859 @default.
- W2016299239 hasConceptScore W2016299239C2776911258 @default.
- W2016299239 hasConceptScore W2016299239C2778449969 @default.
- W2016299239 hasConceptScore W2016299239C2779570065 @default.
- W2016299239 hasConceptScore W2016299239C41008148 @default.
- W2016299239 hasConceptScore W2016299239C57879066 @default.
- W2016299239 hasConceptScore W2016299239C60053565 @default.
- W2016299239 hasConceptScore W2016299239C71039073 @default.
- W2016299239 hasConceptScore W2016299239C97355855 @default.
- W2016299239 hasIssue "4" @default.
- W2016299239 hasLocation W20162992391 @default.
- W2016299239 hasOpenAccess W2016299239 @default.
- W2016299239 hasPrimaryLocation W20162992391 @default.
- W2016299239 hasRelatedWork W1969680472 @default.
- W2016299239 hasRelatedWork W2016299239 @default.
- W2016299239 hasRelatedWork W2069038763 @default.