Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016304830> ?p ?o ?g. }
- W2016304830 endingPage "5817" @default.
- W2016304830 startingPage "5811" @default.
- W2016304830 abstract "One of the costs of Taiwan's massive economic development has been severe air pollution problems in many parts of the island. Since vehicle emissions are the major source of air pollution in most of Taiwan's urban areas, Taiwan's government has implemented policies to rectify the degrading air quality, especially in areas with high population density. To reduce vehicle pollution emissions an on-road remote sensing and monitoring system is used to check the exhaust emissions from gasoline engine automobiles. By identifying individual vehicles with excessive emissions for follow-up inspection and testing, air quality in the urban environment is expected to improve greatly. Because remote sensing is capable of measuring a large number of moving vehicles in a short period, it has been considered as an assessment technique in place of the stationary emission-sampling techniques. However, inherent measurement uncertainty of remote sensing instrumentation, compounded by the indeterminacy of monitoring site selection, plus the vagaries of weather, causes large errors in pollution discrimination and limits the application of the remote sensing. Many governments are still waiting for a novel data analysis methodology to clamp down on heavily emitting vehicles by using remote sensing data. This paper proposes an artificial neural network (ANN), with vehicle attributes embedded, that can be trained by genetic algorithm (GA) based on different strategies to predict vehicle emission violation. Results show that the accuracy of predicting emission violation is as high as 92%. False determinations tend to occur for vehicles aged 7–13 years, peaking at 10 years of age." @default.
- W2016304830 created "2016-06-24" @default.
- W2016304830 creator A5083170179 @default.
- W2016304830 creator A5089459130 @default.
- W2016304830 creator A5090096384 @default.
- W2016304830 date "2009-11-01" @default.
- W2016304830 modified "2023-09-24" @default.
- W2016304830 title "Automobile gross emitter screening with remote sensing data using objective-oriented neural network" @default.
- W2016304830 cites W1964057666 @default.
- W2016304830 cites W1969939094 @default.
- W2016304830 cites W1978492712 @default.
- W2016304830 cites W1982497120 @default.
- W2016304830 cites W1990393139 @default.
- W2016304830 cites W1996850603 @default.
- W2016304830 cites W1998135189 @default.
- W2016304830 cites W1998416378 @default.
- W2016304830 cites W1998603171 @default.
- W2016304830 cites W2000812593 @default.
- W2016304830 cites W2008267658 @default.
- W2016304830 cites W2021442357 @default.
- W2016304830 cites W2026103869 @default.
- W2016304830 cites W2041178263 @default.
- W2016304830 cites W2048509079 @default.
- W2016304830 cites W2051901665 @default.
- W2016304830 cites W2052822149 @default.
- W2016304830 cites W2062533344 @default.
- W2016304830 cites W2062990834 @default.
- W2016304830 cites W2066055650 @default.
- W2016304830 cites W2070997231 @default.
- W2016304830 cites W2073379211 @default.
- W2016304830 cites W2074341845 @default.
- W2016304830 cites W2079949550 @default.
- W2016304830 cites W2080500244 @default.
- W2016304830 cites W2081060670 @default.
- W2016304830 cites W2084647869 @default.
- W2016304830 cites W2097374852 @default.
- W2016304830 cites W2161120624 @default.
- W2016304830 doi "https://doi.org/10.1016/j.scitotenv.2009.07.016" @default.
- W2016304830 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19712961" @default.
- W2016304830 hasPublicationYear "2009" @default.
- W2016304830 type Work @default.
- W2016304830 sameAs 2016304830 @default.
- W2016304830 citedByCount "3" @default.
- W2016304830 countsByYear W20163048302012 @default.
- W2016304830 countsByYear W20163048302016 @default.
- W2016304830 countsByYear W20163048302021 @default.
- W2016304830 crossrefType "journal-article" @default.
- W2016304830 hasAuthorship W2016304830A5083170179 @default.
- W2016304830 hasAuthorship W2016304830A5089459130 @default.
- W2016304830 hasAuthorship W2016304830A5090096384 @default.
- W2016304830 hasConcept C126314574 @default.
- W2016304830 hasConcept C127413603 @default.
- W2016304830 hasConcept C140779682 @default.
- W2016304830 hasConcept C144024400 @default.
- W2016304830 hasConcept C149923435 @default.
- W2016304830 hasConcept C153294291 @default.
- W2016304830 hasConcept C178790620 @default.
- W2016304830 hasConcept C185592680 @default.
- W2016304830 hasConcept C18903297 @default.
- W2016304830 hasConcept C205649164 @default.
- W2016304830 hasConcept C2908647359 @default.
- W2016304830 hasConcept C39432304 @default.
- W2016304830 hasConcept C521259446 @default.
- W2016304830 hasConcept C559116025 @default.
- W2016304830 hasConcept C62649853 @default.
- W2016304830 hasConcept C76155785 @default.
- W2016304830 hasConcept C86803240 @default.
- W2016304830 hasConcept C94915269 @default.
- W2016304830 hasConceptScore W2016304830C126314574 @default.
- W2016304830 hasConceptScore W2016304830C127413603 @default.
- W2016304830 hasConceptScore W2016304830C140779682 @default.
- W2016304830 hasConceptScore W2016304830C144024400 @default.
- W2016304830 hasConceptScore W2016304830C149923435 @default.
- W2016304830 hasConceptScore W2016304830C153294291 @default.
- W2016304830 hasConceptScore W2016304830C178790620 @default.
- W2016304830 hasConceptScore W2016304830C185592680 @default.
- W2016304830 hasConceptScore W2016304830C18903297 @default.
- W2016304830 hasConceptScore W2016304830C205649164 @default.
- W2016304830 hasConceptScore W2016304830C2908647359 @default.
- W2016304830 hasConceptScore W2016304830C39432304 @default.
- W2016304830 hasConceptScore W2016304830C521259446 @default.
- W2016304830 hasConceptScore W2016304830C559116025 @default.
- W2016304830 hasConceptScore W2016304830C62649853 @default.
- W2016304830 hasConceptScore W2016304830C76155785 @default.
- W2016304830 hasConceptScore W2016304830C86803240 @default.
- W2016304830 hasConceptScore W2016304830C94915269 @default.
- W2016304830 hasIssue "22" @default.
- W2016304830 hasLocation W20163048301 @default.
- W2016304830 hasLocation W20163048302 @default.
- W2016304830 hasOpenAccess W2016304830 @default.
- W2016304830 hasPrimaryLocation W20163048301 @default.
- W2016304830 hasRelatedWork W1967277852 @default.
- W2016304830 hasRelatedWork W2350032862 @default.
- W2016304830 hasRelatedWork W2352002076 @default.
- W2016304830 hasRelatedWork W2354265662 @default.
- W2016304830 hasRelatedWork W2356591192 @default.
- W2016304830 hasRelatedWork W2381763096 @default.
- W2016304830 hasRelatedWork W2385595373 @default.