Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016317373> ?p ?o ?g. }
- W2016317373 endingPage "5906" @default.
- W2016317373 startingPage "5897" @default.
- W2016317373 abstract "In this work, a theoretical approach via artificial neural networks model has been followed for studying the water gas shift reaction in hydrogen selective membrane reactors, based on an experimental campaign useful for training the aforementioned model. In particular, such parameters as the reaction pressure (from 150 to 300 kPa), reaction temperature (from 300 to 360 °C), gas hourly space velocity (GHSV) between 2000 and 6000 h−1, sweep gas flow rate (between 35.75 and 130.42 mL/min of N2), H2O/CO feed molar ratio (from 1/1to 4.5/1) and feed configuration (co–or counter-current mode with respect to the sweep gas) have been considered from both a modeling and an experimental point of view in order to analyze their influence on the water gas shift performance (in terms of CO conversion, hydrogen recovery, hydrogen permeate purity) in two membrane reactors, allocating dense Pd–Ag membranes, having different active membrane surface areas. As best experimental results, by using a Cu–Zn based catalyst, at GHSV = 3340 h−1, T = 350 °C, H2O/CO feed molar ratio = 2/1 and co-current configuration of sweep gas, CO conversion around 100% and H2 recovery of about 70% were reached. Meanwhile, the artificial neural networks model has been validated by using part of the experimental tests as training values and, then, it was used for optimizing the system to achieve as much as possible high hydrogen recovery. The model predicted the experimental performance of the water gas shift membrane reactors with an error on CO conversion lower than 0.5% and around 10% for the H2 recovery over the experimental tests not used during the model training." @default.
- W2016317373 created "2016-06-24" @default.
- W2016317373 creator A5010115057 @default.
- W2016317373 creator A5012856775 @default.
- W2016317373 creator A5021205602 @default.
- W2016317373 creator A5038517882 @default.
- W2016317373 creator A5052670689 @default.
- W2016317373 creator A5073996755 @default.
- W2016317373 date "2015-05-01" @default.
- W2016317373 modified "2023-10-18" @default.
- W2016317373 title "Water gas shift reaction in membrane reactors: Theoretical investigation by artificial neural networks model and experimental validation" @default.
- W2016317373 cites W1963724786 @default.
- W2016317373 cites W1968984855 @default.
- W2016317373 cites W1978514986 @default.
- W2016317373 cites W1981951579 @default.
- W2016317373 cites W1984447033 @default.
- W2016317373 cites W1995815612 @default.
- W2016317373 cites W2007980495 @default.
- W2016317373 cites W2009918708 @default.
- W2016317373 cites W2010025549 @default.
- W2016317373 cites W2016554941 @default.
- W2016317373 cites W2040537487 @default.
- W2016317373 cites W2058708556 @default.
- W2016317373 cites W2084558466 @default.
- W2016317373 cites W2087321123 @default.
- W2016317373 cites W2094571986 @default.
- W2016317373 cites W2105402829 @default.
- W2016317373 cites W2334617104 @default.
- W2016317373 cites W2566816320 @default.
- W2016317373 doi "https://doi.org/10.1016/j.ijhydene.2015.03.039" @default.
- W2016317373 hasPublicationYear "2015" @default.
- W2016317373 type Work @default.
- W2016317373 sameAs 2016317373 @default.
- W2016317373 citedByCount "32" @default.
- W2016317373 countsByYear W20163173732016 @default.
- W2016317373 countsByYear W20163173732017 @default.
- W2016317373 countsByYear W20163173732018 @default.
- W2016317373 countsByYear W20163173732019 @default.
- W2016317373 countsByYear W20163173732020 @default.
- W2016317373 countsByYear W20163173732021 @default.
- W2016317373 countsByYear W20163173732022 @default.
- W2016317373 countsByYear W20163173732023 @default.
- W2016317373 crossrefType "journal-article" @default.
- W2016317373 hasAuthorship W2016317373A5010115057 @default.
- W2016317373 hasAuthorship W2016317373A5012856775 @default.
- W2016317373 hasAuthorship W2016317373A5021205602 @default.
- W2016317373 hasAuthorship W2016317373A5038517882 @default.
- W2016317373 hasAuthorship W2016317373A5052670689 @default.
- W2016317373 hasAuthorship W2016317373A5073996755 @default.
- W2016317373 hasConcept C113196181 @default.
- W2016317373 hasConcept C118792377 @default.
- W2016317373 hasConcept C119857082 @default.
- W2016317373 hasConcept C121332964 @default.
- W2016317373 hasConcept C127413603 @default.
- W2016317373 hasConcept C161790260 @default.
- W2016317373 hasConcept C172120300 @default.
- W2016317373 hasConcept C175113610 @default.
- W2016317373 hasConcept C178790620 @default.
- W2016317373 hasConcept C185592680 @default.
- W2016317373 hasConcept C18762648 @default.
- W2016317373 hasConcept C192562407 @default.
- W2016317373 hasConcept C194439259 @default.
- W2016317373 hasConcept C204242273 @default.
- W2016317373 hasConcept C41008148 @default.
- W2016317373 hasConcept C41625074 @default.
- W2016317373 hasConcept C42360764 @default.
- W2016317373 hasConcept C42922719 @default.
- W2016317373 hasConcept C43617362 @default.
- W2016317373 hasConcept C50644808 @default.
- W2016317373 hasConcept C50670333 @default.
- W2016317373 hasConcept C512968161 @default.
- W2016317373 hasConcept C55493867 @default.
- W2016317373 hasConcept C66114498 @default.
- W2016317373 hasConcept C97355855 @default.
- W2016317373 hasConcept C97488330 @default.
- W2016317373 hasConceptScore W2016317373C113196181 @default.
- W2016317373 hasConceptScore W2016317373C118792377 @default.
- W2016317373 hasConceptScore W2016317373C119857082 @default.
- W2016317373 hasConceptScore W2016317373C121332964 @default.
- W2016317373 hasConceptScore W2016317373C127413603 @default.
- W2016317373 hasConceptScore W2016317373C161790260 @default.
- W2016317373 hasConceptScore W2016317373C172120300 @default.
- W2016317373 hasConceptScore W2016317373C175113610 @default.
- W2016317373 hasConceptScore W2016317373C178790620 @default.
- W2016317373 hasConceptScore W2016317373C185592680 @default.
- W2016317373 hasConceptScore W2016317373C18762648 @default.
- W2016317373 hasConceptScore W2016317373C192562407 @default.
- W2016317373 hasConceptScore W2016317373C194439259 @default.
- W2016317373 hasConceptScore W2016317373C204242273 @default.
- W2016317373 hasConceptScore W2016317373C41008148 @default.
- W2016317373 hasConceptScore W2016317373C41625074 @default.
- W2016317373 hasConceptScore W2016317373C42360764 @default.
- W2016317373 hasConceptScore W2016317373C42922719 @default.
- W2016317373 hasConceptScore W2016317373C43617362 @default.
- W2016317373 hasConceptScore W2016317373C50644808 @default.
- W2016317373 hasConceptScore W2016317373C50670333 @default.
- W2016317373 hasConceptScore W2016317373C512968161 @default.
- W2016317373 hasConceptScore W2016317373C55493867 @default.