Matches in SemOpenAlex for { <https://semopenalex.org/work/W2016319093> ?p ?o ?g. }
- W2016319093 endingPage "475" @default.
- W2016319093 startingPage "467" @default.
- W2016319093 abstract "The availability of a reliable prediction method for prediction of bacterial virulent proteins has several important applications in research efforts targeted aimed at finding novel drug targets, vaccine candidates, and understanding virulence mechanisms in pathogens. In this work, we have studied several feature extraction approaches for representing proteins and propose a novel bacterial virulent protein prediction method, based on an ensemble of classifiers where the features are extracted directly from the amino acid sequence and from the evolutionary information of a given protein. We have evaluated and compared several ensembles obtained by combining six feature extraction methods and several classification approaches based on two general purpose classifiers (i.e., Support Vector Machine and a variant of input decimated ensemble) and their random subspace version. An extensive evaluation was performed according to a blind testing protocol, where the parameters of the system are optimized using the training set and the system is validated in three different independent data sets, allowing selection of the most performing system and demonstrating the validity of the proposed method. Based on the results obtained using the blind test protocol, it is interesting to note that even if in each independent data set the most performing stand-alone method is not always the same, the fusion of different methods enhances prediction efficiency in all the tested independent data sets." @default.
- W2016319093 created "2016-06-24" @default.
- W2016319093 creator A5007729428 @default.
- W2016319093 creator A5027551258 @default.
- W2016319093 creator A5062639338 @default.
- W2016319093 creator A5063159501 @default.
- W2016319093 date "2012-03-01" @default.
- W2016319093 modified "2023-10-17" @default.
- W2016319093 title "Identifying Bacterial Virulent Proteins by Fusing a Set of Classifiers Based on Variants of Chou's Pseudo Amino Acid Composition and on Evolutionary Information" @default.
- W2016319093 cites W1563088657 @default.
- W2016319093 cites W1586405805 @default.
- W2016319093 cites W1816488618 @default.
- W2016319093 cites W1966849089 @default.
- W2016319093 cites W1967501922 @default.
- W2016319093 cites W1970399546 @default.
- W2016319093 cites W1971403296 @default.
- W2016319093 cites W1976133477 @default.
- W2016319093 cites W1977927254 @default.
- W2016319093 cites W1981091069 @default.
- W2016319093 cites W1989751871 @default.
- W2016319093 cites W1990537176 @default.
- W2016319093 cites W1992577925 @default.
- W2016319093 cites W1992991025 @default.
- W2016319093 cites W1999766624 @default.
- W2016319093 cites W2000731859 @default.
- W2016319093 cites W2003613304 @default.
- W2016319093 cites W2008416470 @default.
- W2016319093 cites W2008767404 @default.
- W2016319093 cites W2012686113 @default.
- W2016319093 cites W2014915963 @default.
- W2016319093 cites W2018235493 @default.
- W2016319093 cites W2020969907 @default.
- W2016319093 cites W2024648909 @default.
- W2016319093 cites W2024849319 @default.
- W2016319093 cites W2029904979 @default.
- W2016319093 cites W2034070267 @default.
- W2016319093 cites W2036154117 @default.
- W2016319093 cites W2036956828 @default.
- W2016319093 cites W2040861514 @default.
- W2016319093 cites W2044102986 @default.
- W2016319093 cites W2052932274 @default.
- W2016319093 cites W2066363861 @default.
- W2016319093 cites W2066937690 @default.
- W2016319093 cites W2069389043 @default.
- W2016319093 cites W2080915318 @default.
- W2016319093 cites W2087317522 @default.
- W2016319093 cites W2087453953 @default.
- W2016319093 cites W2088117005 @default.
- W2016319093 cites W2090705836 @default.
- W2016319093 cites W2102354653 @default.
- W2016319093 cites W2106141559 @default.
- W2016319093 cites W2113242816 @default.
- W2016319093 cites W2116089841 @default.
- W2016319093 cites W2118101156 @default.
- W2016319093 cites W2119497560 @default.
- W2016319093 cites W2120026469 @default.
- W2016319093 cites W2122181892 @default.
- W2016319093 cites W2126471970 @default.
- W2016319093 cites W2138874847 @default.
- W2016319093 cites W2143244636 @default.
- W2016319093 cites W2143635696 @default.
- W2016319093 cites W2143938791 @default.
- W2016319093 cites W2148004368 @default.
- W2016319093 cites W2151180344 @default.
- W2016319093 cites W2155446033 @default.
- W2016319093 cites W2158275940 @default.
- W2016319093 cites W2158714788 @default.
- W2016319093 cites W2163884975 @default.
- W2016319093 cites W278909723 @default.
- W2016319093 cites W4206336088 @default.
- W2016319093 cites W4213149192 @default.
- W2016319093 cites W4213345021 @default.
- W2016319093 cites W4236236547 @default.
- W2016319093 doi "https://doi.org/10.1109/tcbb.2011.117" @default.
- W2016319093 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21860064" @default.
- W2016319093 hasPublicationYear "2012" @default.
- W2016319093 type Work @default.
- W2016319093 sameAs 2016319093 @default.
- W2016319093 citedByCount "146" @default.
- W2016319093 countsByYear W20163190932012 @default.
- W2016319093 countsByYear W20163190932013 @default.
- W2016319093 countsByYear W20163190932014 @default.
- W2016319093 countsByYear W20163190932015 @default.
- W2016319093 countsByYear W20163190932016 @default.
- W2016319093 countsByYear W20163190932017 @default.
- W2016319093 countsByYear W20163190932018 @default.
- W2016319093 countsByYear W20163190932019 @default.
- W2016319093 countsByYear W20163190932020 @default.
- W2016319093 countsByYear W20163190932021 @default.
- W2016319093 countsByYear W20163190932022 @default.
- W2016319093 countsByYear W20163190932023 @default.
- W2016319093 crossrefType "journal-article" @default.
- W2016319093 hasAuthorship W2016319093A5007729428 @default.
- W2016319093 hasAuthorship W2016319093A5027551258 @default.
- W2016319093 hasAuthorship W2016319093A5062639338 @default.
- W2016319093 hasAuthorship W2016319093A5063159501 @default.
- W2016319093 hasConcept C104317684 @default.
- W2016319093 hasConcept C106135958 @default.